Patents by Inventor Daniel F. Miller

Daniel F. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081755
    Abstract: A weightbearing simulation assembly, includes a substrate having a mounting surface, the substrate further including a first section and second section hingedly coupled together such that the first section and second section are foldable relative one another. A subject support is disposed on a first section of the mounting surface, and a pedal assembly is disposed on a second section of the mounting surface. The pedal assembly is spaced apart from the subject support by a distance, and includes a contact plate that receives a compressive force from a subject, measures the compressive force, and provides an indication that the compressive force corresponds to a weightbearing condition of the subject.
    Type: Application
    Filed: September 12, 2023
    Publication date: March 14, 2024
    Applicant: SIMULATE Technologies, LLC
    Inventors: Mark Carl Miller, Daniel Schwartzbauer, Stephen F. Conti, Sven Huijs
  • Patent number: 9055195
    Abstract: A system for bi-directional data content transfer between a plurality of mobile platforms, such as aircraft or cruise ships, and a ground-based control segment. The system includes the ground-based control segment, a space segment and a mobile system disposed on each mobile platform. The ground-based control segment includes an antenna which is used to transmit encoded RF signals representative of data content to the space segment. The space segment includes a plurality of satellite transponders, with one of the transponders being designated by the ground-based control segment to transpond the encoded RF signals to the mobile system. The mobile system includes steerable receive and transmit antennas. The receive antenna receives the encoded RF signals from the satellite transponder, which are thereafter decoded, demodulated, D/A converted by a communications subsystem and transmitted to a server. The server filters off that data content not requested by any occupants on the mobile system.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: June 9, 2015
    Assignee: The Boeing Company
    Inventors: Greg A. Bengeult, Jeffrey P. Harrang, William R. Richards, Michael G. Lynch, Michael De La Chapelle, Paulus J. Martens, Ronald S. Carson, Richard D. Williams, II, Daniel F. Miller, Geoffrey O. White, George Fitzsimmons, Russell Berkheimer, Robert P. Higgins, Arthur F. Morrison
  • Publication number: 20140150033
    Abstract: A system for bi-directional data content transfer between a plurality of mobile platforms, such as aircraft or cruise ships, and a ground-based control segment. The system includes the ground-based control segment, a space segment and a mobile system disposed on each mobile platform. The ground-based control segment includes an antenna which is used to transmit encoded RF signals representative of data content to the space segment. The space segment includes a plurality of satellite transponders, with one of the transponders being designated by the ground-based control segment to transpond the encoded RF signals to the mobile system. The mobile system includes steerable receive and transmit antennas. The receive antenna receives the encoded RF signals from the satellite transponder, which are thereafter decoded, demodulated, D/A converted by a communications subsystem and transmitted to a server. The server filters off that data content not requested by any occupants on the mobile system.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 29, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Greg A. Bengeult, Jeffrey P. Harrang, William R. Richards, Michael G. Lynch, Michael De La Chapelle, Paulus J. Martens, Ronald S. Carson, Richard D. Williams, II, Daniel F. Miller, Geoffrey O. White, George Fitzsimmons, Russell Berkheimer, Robert P. Higgins, Arthur F. Morrison
  • Patent number: 8646010
    Abstract: A system for bi-directional data content transfer between a plurality of mobile platforms, such as aircraft or cruise ships, and a ground-based control segment. The system includes the ground-based control segment, a space segment and a mobile system disposed on each mobile platform. The ground-based control segment includes an antenna which is used to transmit encoded RF signals representative of data content to the space segment. The space segment includes a plurality of satellite transponders, with one of the transponders being designated by the ground-based control segment to transpond the encoded RF signals to the mobile system. The mobile system includes steerable receive and transmit antennas. The receive antenna receives the encoded RF signals from the satellite transponder, which are thereafter decoded, demodulated, D/A converted by a communications subsystem and transmitted to a server. The server filters off that data content not requested by any occupants on the mobile system.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 4, 2014
    Assignee: The Boeing Company
    Inventors: Greg A. Bengeult, Jeffrey P. Harrang, William R. Richards, Michael G. Lynch, Michael De La Chapelle, Paulus J. Martens, Ronald S. Carson, Richard D. Williams, II, Daniel F. Miller, Geoffrey O. White, George Fitzsimmons, Russell Berkheimer, Robert P. Higgins, Arthur F. Morrison
  • Publication number: 20110265128
    Abstract: A system for bi-directional data content transfer between a plurality of mobile platforms, such as aircraft or cruise ships, and a ground-based control segment. The system includes the ground-based control segment, a space segment and a mobile system disposed on each mobile platform. The ground-based control segment includes an antenna which is used to transmit encoded RF signals representative of data content to the space segment. The space segment includes a plurality of satellite transponders, with one of the transponders being designated by the ground-based control segment to transpond the encoded RF signals to the mobile system. The mobile system includes steerable receive and transmit antennas. The receive antenna receives the encoded RF signals from the satellite transponder, which are thereafter decoded, demodulated, D/A converted by a communications subsystem and transmitted to a server. The server filters off that data content not requested by any occupants on the mobile system.
    Type: Application
    Filed: July 5, 2011
    Publication date: October 27, 2011
    Applicant: The Boeing Company
    Inventors: Greg A. Bengeult, Jeffrey P. Harrang, William R. Richards, Michael G. Lynch, Michael De La Chapelle, Paulus J. Martens, Ronald S. Carson, Richard D. Williams, II, Daniel F. Miller, Geoffrey O. White, George Fitzsimmons, Russell Berkheimer, Robert P. Higgins, Arthur F. Morrison
  • Publication number: 20090080368
    Abstract: A system for bi-directional data content transfer between a plurality of mobile platforms, such as aircraft or cruise ships, and a ground-based control segment. The system includes the ground-based control segment, a space segment and a mobile system disposed on each mobile platform. The ground-based control segment includes an antenna which is used to transmit encoded RF signals representative of data content to the space segment. The space segment includes a plurality of satellite transponders, with one of the transponders being designated by the ground-based control segment to transpond the encoded RF signals to the mobile system. The mobile system includes steerable receive and transmit antennas. The receive antenna receives the encoded RF signals from the satellite transponder, which are thereafter decoded, demodulated, D/A converted by a communications subsystem and transmitted to a server. The server filters off that data content not requested by any occupants on the mobile system.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 26, 2009
    Applicant: The Boeing Company
    Inventors: Greg A. Bengeult, Jeffrey P. Harrang, William R. Richards, Michael G. Lynch, Michael de La Chapelle, Paulus J. Martens, Ronald S. Carson, Richard D. Williams, II, Daniel F. Miller, Geoffrey O. White, George Fitzsimmons, Russell Berkheimer, Robert P. Higgins, Arthur F. Morrison
  • Publication number: 20020087992
    Abstract: A system for bi-directional data content transfer between a plurality of mobile platforms, such as aircraft or cruise ships, and a ground-based control segment. The system includes the ground-based control segment, a space segment and a mobile system disposed on each mobile platform. The ground-based control segment includes an antenna which is used to transmit encoded RF signals representative of data content to the space segment. The space segment includes a plurality of satellite transponders, with one of the transponders being designated by the ground-based control segment to transpond the encoded RF signals to the mobile system. The mobile system includes steerable receive and transmit antennas. The receive antenna receives the encoded RF signals from the satellite transponder, which are thereafter decoded by a communications subsystem and transmitted to a server. The server filters off that data content not requested by any occupants on the mobile system.
    Type: Application
    Filed: November 20, 2001
    Publication date: July 4, 2002
    Inventors: Greg A. Bengeult, Jeffrey P. Harrang, William R. Richards, Michael G. Lynch, Michael de La Chapelle, Paulus J. Martens, Richard D. Williams, Daniel F. Miller, Geoffrey White, George Fitzsimmons, Russell Berkheimer, Robert P. Higgins, Arthur F. Morrison
  • Patent number: 5490379
    Abstract: A fuel metering unit for an aircraft gas turbine engine has both electronic and manual control, both compensated for altitude variations. A three-dimensional cam is used to control the position of a fuel metering valve. One axis of the 3-D cam is electronically controlled and another is mechanically controlled. Electronic control is the normal mode and sets the electronic axis to provide a fuel metering valve setting which delivers a mass flow rate to the engine as demanded by the position of the fuel lever as interpreted by the electronic control. Upon failure of the electronic control, the position of the 3-D cam along the electronic axis is mechanically locked so that any further changes in fuel metering valve position are a function solely of the position of the power lever as translated to the mechanical axis of the 3-D cam. Transfer from electronic to manual control is therefore "bumpless.
    Type: Grant
    Filed: December 20, 1993
    Date of Patent: February 13, 1996
    Assignee: Woodward Governor Company
    Inventors: Donald E. Wernberg, Gregory A. Molenaar, Daniel F. Miller