Patents by Inventor Daniel James Wright

Daniel James Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11485018
    Abstract: A non-destructive inspection system is presented. The non-destructive inspection system comprises a robotic end effector having an extendable actuator and a flange-mounted roller containing an ultrasonic sensor, the flange-mounted roller connected to the extendable actuator by a pivot connection, the extendable actuator configured to extend the flange-mounted roller until the flange-mounted roller contacts an inspection surface.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: November 1, 2022
    Assignee: The Boeing Company
    Inventors: James J. Troy, Daniel James Wright, Scott Wesley Lea, William Joseph Tapia, Gary Ernest Georgeson
  • Publication number: 20210078177
    Abstract: A non-destructive inspection system is presented. The non-destructive inspection system comprises a robotic end effector having an extendable actuator and a flange-mounted roller containing an ultrasonic sensor, the flange-mounted roller connected to the extendable actuator by a pivot connection, the extendable actuator configured to extend the flange-mounted roller until the flange-mounted roller contacts an inspection surface.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: James J. Troy, Daniel James Wright, Scott Wesley Lea, William Joseph Tapia, Gary Ernest Georgeson
  • Patent number: 10814480
    Abstract: Apparatus and methods that can be used to stabilize the distal end of an arm (and an end effector attached thereto) of an automated extended-reach tool-equipped assembly. Stabilization is provided by three or more stabilizers, each comprising a stationary part and a movable part. Each stationary part has a fixed location relative to the end effector; each movable part is translatably coupled to a respective stationary part and comprises a contactor disposed at a distal end of the movable part. When the stabilizers are actuated, the contactors are translated toward and into contact with the surface of the workpiece and then locked in place to stabilize the distal end of the arm and the end effector. During tool operation, the stabilizers reduce oscillation of the end effector (and all structure fixedly coupled thereto).
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 27, 2020
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, James J. Troy, Scott W. Lea, Daniel James Wright
  • Patent number: 10634632
    Abstract: Systems and methods for non-destructive inspection (NDI) of target objects having non-planar surfaces (such as aircraft components having internal stiffeners). A robotic NDI platform is equipped with an NDI sensor and a laser-based alignment system. The laser-based alignment system is operated in a manner to acquire surface profile information in an area of interest on a non-planar surface of the target object. Then the acquired surface profile data is processed by a computer to generate a motion plan for automatically guiding the robotic NDI platform and the NDI sensor to the correct locations, where images of the area of interest may be captured.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: April 28, 2020
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Daniel James Wright
  • Patent number: 10625427
    Abstract: Systems and methods for automating robotic end effector alignment using real-time data from multiple distance sensors to control relative translational and rotational motion. In accordance with one embodiment, the alignment process involves computation of offset distance and rotational angles to guide a robotic end effector to a desired location relative to a target object. The relative alignment process enables the development of robotic motion path planning applications that minimize on-line and off-line motion path script creation, resulting in an easier-to-use robotic application. A relative alignment process with an independent (off-board) method for target object coordinate system registration can be used. One example implementation uses a finite-state machine configuration to control a holonomic motion robotic platform with rotational end effector used for grid-based scan acquisition for non-destructive inspection.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 21, 2020
    Assignee: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea, Daniel James Wright
  • Publication number: 20190331620
    Abstract: Systems and methods for non-destructive inspection (NDI) of target objects having non-planar surfaces (such as aircraft components having internal stiffeners). A robotic NDI platform is equipped with an NDI sensor and a laser-based alignment system. The laser-based alignment system is operated in a manner to acquire surface profile information in an area of interest on a non-planar surface of the target object. Then the acquired surface profile data is processed by a computer to generate a motion plan for automatically guiding the robotic NDI platform and the NDI sensor to the correct locations, where images of the area of interest may be captured.
    Type: Application
    Filed: April 25, 2018
    Publication date: October 31, 2019
    Applicant: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Daniel James Wright
  • Publication number: 20180361571
    Abstract: Apparatus and methods that can be used to stabilize the distal end of an arm (and an end effector attached thereto) of an automated extended-reach tool-equipped assembly. Stabilization is provided by three or more stabilizers, each comprising a stationary part and a movable part. Each stationary part has a fixed location relative to the end effector; each movable part is translatably coupled to a respective stationary part and comprises a contactor disposed at a distal end of the movable part. When the stabilizers are actuated, the contactors are translated toward and into contact with the surface of the workpiece and then locked in place to stabilize the distal end of the arm and the end effector. During tool operation, the stabilizers reduce oscillation of the end effector (and all structure fixedly coupled thereto).
    Type: Application
    Filed: January 24, 2018
    Publication date: December 20, 2018
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, James J. Troy, Scott W. Lea, Daniel James Wright
  • Publication number: 20180361595
    Abstract: Systems and methods for automating robotic end effector alignment using real-time data from multiple distance sensors to control relative translational and rotational motion. In accordance with one embodiment, the alignment process involves computation of offset distance and rotational angles to guide a robotic end effector to a desired location relative to a target object. The relative alignment process enables the development of robotic motion path planning applications that minimize on-line and off-line motion path script creation, resulting in an easier-to-use robotic application. A relative alignment process with an independent (off-board) method for target object coordinate system registration can be used. One example implementation uses a finite-state machine configuration to control a holonomic motion robotic platform with rotational end effector used for grid-based scan acquisition for non-destructive inspection.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Applicant: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea, Daniel James Wright
  • Patent number: 9470658
    Abstract: A self-contained, holonomic motion tracking solution for supplementing the acquisition of inspection information on the surface of a structure, thereby enabling the real-time production of two-dimensional images from hand-held and automated scanning by holonomic-motion of non-destructive inspection (NDI) sensor units (e.g., NDI probes). The systems and methods disclosed enable precise tracking of the position and orientation of a holonomic-motion NDI sensor unit (hand-held or automated) and conversion of the acquired tracking data into encoder pulse signals for processing by a NDI scanning system.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 18, 2016
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Karl E. Nelson, Daniel James Wright
  • Patent number: 9464754
    Abstract: A system comprising a multi-functional boom subsystem integrated with a holonomic-motion boom base platform. The boom base platform may comprise: Mecanum wheels with independently controlled motors; a pair of sub-platforms coupled by a roll-axis pivot to maintain four-wheel contact with the ground surface; and twist reduction mechanisms to minimize any yaw-axis twisting torque exerted on the roll-axis pivot. A computer with motion control software may be embedded on the boom base platform. The motion control function can be integrated with a real-time tracking system. The motion control computer may have multiple platform motion control modes: (1) a path following mode in which the boom base platform matches the motion path of the surface crawler (i.e.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: October 11, 2016
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Karl Edward Nelson, Daniel James Wright
  • Publication number: 20160281910
    Abstract: A system comprising a multi-functional boom subsystem integrated with a holonomic-motion boom base platform. The boom base platform may comprise: Mecanum wheels with independently controlled motors; a pair of sub-platforms coupled by a roll-axis pivot to maintain four-wheel contact with the ground surface; and twist reduction mechanisms to minimize any yaw-axis twisting torque exerted on the roll-axis pivot. A computer with motion control software may be embedded on the boom base platform. The motion control function can be integrated with a real-time tracking system. The motion control computer may have multiple platform motion control modes: (1) a path following mode in which the boom base platform matches the motion path of the surface crawler (i.e.
    Type: Application
    Filed: June 14, 2016
    Publication date: September 29, 2016
    Applicant: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Karl Edward Nelson, Daniel James Wright
  • Patent number: 9410659
    Abstract: A system comprising a multi-functional boom subsystem integrated with a holonomic-motion boom base platform. The boom base platform may comprise: Mecanum wheels with independently controlled motors; a pair of sub-platforms coupled by a roll-axis pivot to maintain four-wheel contact with the ground surface; and twist reduction mechanisms to minimize any yaw-axis twisting torque exerted on the roll-axis pivot. A computer with motion control software may be embedded on the boom base platform. The motion control function can be integrated with a real-time tracking system. The motion control computer may have multiple platform motion control modes: (1) a path following mode in which the boom base platform matches the motion path of the surface crawler (i.e.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: August 9, 2016
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Karl Edward Nelson, Daniel James Wright
  • Patent number: 9197810
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: November 24, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Patent number: 9156321
    Abstract: A system is disclosed comprising a tractor vehicle, at least one trailer vehicle and a skin between and in contact with the tractor and trailer vehicles. One of the tractor and trailer vehicles is disposed in a non-inverted position above the skin and the other is disposed in an inverted position below the skin. The trailer vehicle comprises one or more magnets, while the tractor vehicle comprises one or more magnets magnetically coupled to each opposing magnet on the trailer vehicle. For example, the tractor and trailer vehicles may have mutually opposing permanent magnets in one-to-one relationship. Alternatively, each permanent magnet on the trailer vehicle could be opposed by one or more electro-permanent magnets on the tractor vehicle. The magnetic coupling between the magnets on the tractor and trailer vehicles produces an attraction force.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 13, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright
  • Publication number: 20150226369
    Abstract: A system comprising a multi-functional boom subsystem integrated with a holonomic-motion boom base platform. The boom base platform may comprise: Mecanum wheels with independently controlled motors; a pair of sub-platforms coupled by a roll-axis pivot to maintain four-wheel contact with the ground surface; and twist reduction mechanisms to minimize any yaw-axis twisting torque exerted on the roll-axis pivot. A computer with motion control software may be embedded on the boom base platform. The motion control function can be integrated with a real-time tracking system. The motion control computer may have multiple platform motion control modes: (1) a path following mode in which the boom base platform matches the motion path of the surface crawler (i.e.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicant: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Karl Edward Nelson, Daniel James Wright
  • Publication number: 20150207987
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Applicant: THE BOEING COMPANY
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Patent number: 9043146
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 26, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Patent number: 9010684
    Abstract: A system and method that allow inspection of hollow structures made of composite material, such as an integrally stiffened wing box of an aircraft. A wing box comprises top and bottom skins connected by a plurality of spaced spars. The system employs a plurality of scanners for inspecting different portions of each spar. The system uses dynamically controlled magnetic coupling to connect an external drive tractor to computer-controlled scanners that carry respective sensors, e.g., linear ultrasonic transducer arrays. A system operator can control the various components by means of a graphical user interface comprising multiple interaction regions that represent the individual scanner motion paths and are associated with respective motion script files.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 21, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Michael C. Hutchinson, Martin L. Freet, Ronald E. VonWahlde, Steven Ray Walton, Jeffry J. Garvey, Scott W. Lea, James J. Troy, Daniel James Wright, Hien T. Bui, Michael Joseph Duncan, Mark L. Little, William Joseph Tapia, Barry A. Fetzer, Richard C. Krotzer
  • Publication number: 20140376768
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Publication number: 20140137673
    Abstract: A system is disclosed comprising a tractor vehicle, at least one trailer vehicle and a skin between and in contact with the tractor and trailer vehicles. One of the tractor and trailer vehicles is disposed in a non-inverted position above the skin and the other is disposed in an inverted position below the skin. The trailer vehicle comprises one or more magnets, while the tractor vehicle comprises one or more magnets magnetically coupled to each opposing magnet on the trailer vehicle. For example, the tractor and trailer vehicles may have mutually opposing permanent magnets in one-to-one relationship. Alternatively, each permanent magnet on the trailer vehicle could be opposed by one or more electro-permanent magnets on the tractor vehicle. The magnetic coupling between the magnets on the tractor and trailer vehicles produces an attraction force.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Applicant: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright