Patents by Inventor Daniel Jason Erno

Daniel Jason Erno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180216469
    Abstract: The present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil having a leading edge, a trailing edge, a root, and a tip. The airfoil defines a chord extending from the leading edge to the trailing edge and a span extending from the root to the tip. A first particle-filled damper is positioned within the airfoil between fifty percent of the chord and one hundred percent of the chord.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 2, 2018
    Inventors: Robert Frank Hoskin, Robert Alan Brittingham, Brian Denver Potter, Daniel Jason Erno, John McConnell Delvaux
  • Publication number: 20180180133
    Abstract: A component formed by an additive manufacturing process includes a body and a first vibration damper. The body is formed from an additive manufacturing material, and defines at least a first cavity completely enclosed within the body. The first vibration damper is disposed within the first cavity. The first vibration damper includes a flowable medium and a first solidified element formed from the additive manufacturing material. The flowable medium surrounds the first solidified element.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Inventors: Daniel Jason Erno, Robert Arvin Hedeen, Prabhjot Singh
  • Patent number: 9903434
    Abstract: A component formed by an additive manufacturing process includes a body and a first vibration damper. The body is formed from an additive manufacturing material, and defines at least a first cavity completely enclosed within the body. The first vibration damper is disposed within the first cavity. The first vibration damper includes a flowable medium and a first solidified element formed from the additive manufacturing material. The flowable medium surrounds the first solidified element.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 27, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Daniel Jason Erno, Robert Arvin Hedeen, Prabhjot Singh
  • Publication number: 20170367218
    Abstract: A heat exchanger includes a core defining a first passageway and a second passageway. The core includes a plurality of unit cells coupled together. Each unit cell of the plurality of unit cells includes a first wall and a second wall. The second wall is spaced from the first wall. The first wall at least partially defines a first passageway portion and a second passageway portion. The second wall at least partially defines the second passageway portion. The second wall extends about the first wall such that the first passageway portion is nested within the second passageway portion.
    Type: Application
    Filed: January 3, 2017
    Publication date: December 21, 2017
    Inventors: William Dwight Gerstler, Thomas Kupiszewski, Michael Thomas Kenworthy, Daniel Jason Erno
  • Publication number: 20170342967
    Abstract: In one aspect, a dual pitch bearing configuration for coupling a rotor blade to a hub of a wind turbine. The dual pitch bearing configuration including a first pitch bearing and at least one additional pitch bearing. The first pitch bearing and the and at least one additional pitch bearing are coupled to opposed surfaces of a static shaft. The at least one additional pitch bearing is disposed radially a distance LR and axially a distance LA from the first pitch bearing along the static shaft. The dual pitch bearing is disposed radially within a blade root of the rotor blade. The dual pitch bearing configuration minimizing moment loading on the first pitch bearing and the at least one additional pitch bearing. A wind turbine including the dual pitch bearing configuration is further disclosed.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: Michael Colan Moscinski, Norman Arnold Turnquist, Daniel Jason Erno, Fulton Jose Lopez
  • Publication number: 20170321662
    Abstract: In one aspect, a dual pitch bearing configuration for coupling a rotor blade to a hub of a wind turbine. The dual pitch bearing configuration including a first pitch bearing and at least one additional pitch bearing disposed axially a distance LB from the first pitch bearing. The dual pitch bearing configuration further including one or more spacers disposed between the first pitch bearing and the at least one additional pitch bearing and extending the distance LB. The dual pitch bearing disposed radially within one of a blade root of the rotor blade, a hub extension or a bearing housing and coupled thereto. The dual pitch bearing configuration minimizing moment loading on the first pitch bearing and the at least one additional pitch bearing. A wind turbine including the dual pitch bearing configuration is further disclosed.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 9, 2017
    Inventors: Adam Daniel Minadeo, Norman Arnold Turnquist, Daniel Jason Erno, Fulton Jose Lopez, Bugra Han Ertas, Michael Colan Moscinski
  • Publication number: 20170276440
    Abstract: A heat exchanger includes a cooling air conduit having multiple baffles, a hot air conduit having multiple passes through the cooling air conduit and forming multiple intersections with the baffles, and multiple perforations extending through the baffles. A cooling air flow passes through the baffles, rather than strictly between the baffles, and improves heat-transfer characteristics of the heat exchanger.
    Type: Application
    Filed: March 25, 2016
    Publication date: September 28, 2017
    Inventors: Michael Thomas Kenworthy, William Dwight Gerstler, Daniel Jason Erno, Thomas Kupiszewski, Joseph Robert Coleman
  • Publication number: 20170248372
    Abstract: A heat exchanger is provided. The heat exchanger (40) provides a first plurality of tubes (50) and a second plurality of flow passages (52) which furcate near one of the first (42) and second (44) manifolds into two or more furcated flow passages and subsequently converge to exit the heat exchanger. The plurality of furcated flow passages are intertwined, reducing the distance between flow passages (50,52) containing each fluid therebetween to improve thermal transfer. Further, the furcations create changes of direction of the fluid to re-establish new thermal boundary layers within the flow passages to further reduce resistance to thermal transfer.
    Type: Application
    Filed: October 6, 2015
    Publication date: August 31, 2017
    Inventors: Daniel Jason ERNO, William Dwight GERSTLER
  • Publication number: 20160311519
    Abstract: An aerodynamic dome component that is placed in front of a wind turbine hub includes an outer ring, a central axle disposed relative to the outer ring, a plurality of radially extending tensioning members and a skin-like covering. The plurality of radially extending tensioning members are coupled to the outer ring at a first end and to the central axle at a second end. The outer ring, the plurality of radially extending tensioning members and the central axle together form an underlying dome support structure. The skin-like covering is configured to envelop at least a portion of the underlying dome support structure to form at least a portion of the aerodynamic dome component and define a front dome portion. The skin-like covering enveloping at least a portion of the underlying dome support structure may further define a rear dome portion, wherein the rear dome portion is configured downwind from the front dome portion.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 27, 2016
    Inventors: Fulton Jose Lopez, Daniel Jason Erno, Peggy Lynn Baehmann, Robert Michael Zirin
  • Publication number: 20160202003
    Abstract: A heat exchanger includes a core defining a first passageway configured for a first fluid to flow through and a second passageway configured for a second fluid to flow through. The core includes a plurality of unit cells coupled together. Each unit cell of the plurality of unit cells includes a sidewall at least partly defining a first passageway portion, a second passageway portion, a plurality of first openings for the first fluid to flow through, and a plurality of second openings for the second fluid to flow through. Each unit cell of the plurality of unit cells is configured to enable the first fluid to combine and divide in the first passageway portion. Each unit cell is further configured to enable the second fluid to combine and divide in the second passageway portion.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: William Dwight Gerstler, Daniel Jason Erno, Michael Thomas Kenworthy, Jeffrey Douglas Rambo, Nicolas Kristopher Sabo
  • Patent number: 9353729
    Abstract: An aerodynamic hub assembly for a wind turbine is disclosed. The hub assembly may include a hub extension, a rotor blade having a blade root and a blade tip, and a hub airfoil section mounted at least partially over the hub extension. The hub airfoil section may be fixed relative to the rotor blade or may be configured to rotate about a common pitch axis with the rotor blade. The hub extension may be connected to and extend radially from a center of the hub assembly. Further, the hub assembly may include a pitch bearing having an inner race and an outer race, wherein the pitch bearing may be coupled between the hub extension and the blade root. Additionally, the hub assembly may also include an aerodynamically-shaped spinner, wherein the spinner may house at least a portion of a root structure extending radially from the center of the hub assembly.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: May 31, 2016
    Assignee: General Electric Company
    Inventors: Ian David Wilson, Kevin Wayne Kinzie, James Henry Madge, Daniel Jason Erno, Michael Colan Moscinski, Zaeem Ashraf Khan, Dmytro Floriyovych Opaits
  • Publication number: 20160040650
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: Dmitry Floryovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Fulton Jose Lopez, Daniel Jason Erno, Robert Michael Zirin, Anurag Gupta
  • Patent number: 9103326
    Abstract: A bedplate assembly of a wind turbine is provided. The bedplate assembly includes a rotor shaft with a first end coupled to a rotatable hub of the wind turbine via a rotor flange and a second end coupled to a gearbox. The bedplate assembly also includes a bedplate support frame coupled to the gearbox and to the rotor shaft for supporting the gearbox. The bedplate support frame includes a torque arm support device for supporting torque arms of the gearbox. The bedplate support frame also includes a circular support for housing a shaft support bearing for supporting the rotor shaft at the first end. Further, the bedplate support frame includes a cross-structure located under the rotor shaft, wherein the cross-structure comprises one or more arms connected internally to a first side wall and a second side wall.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 11, 2015
    Assignee: General Electric Company
    Inventors: Daniel Jason Erno, Fulton Jose Lopez, Robert Michael Zirin
  • Publication number: 20150167052
    Abstract: A sample storage and extraction device is provided. The sample storage and extraction device includes a substrate frame and a substrate cover. The substrate frame includes a substrate region configured to receive a sample substrate. The sample storage and extraction device further includes a compression assembly configured to provide an isolation zone in a portion of the sample substrate. Moreover, the sample storage and extraction device includes a fluidic channel configured to flow elution fluid to the isolation zone.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 18, 2015
    Applicant: General Electric Company
    Inventors: Weston Blaine Griffin, Erin Jean Finehout, Ying Mao, Ralf Lenigk, Daniel Jason Erno
  • Patent number: 8968566
    Abstract: A novel separator assembly for a spiral flow reverse osmosis apparatus is provided. In one embodiment, the separator assembly comprises a central core element comprising at least two permeate exhaust conduits and not comprising a concentrate exhaust conduit. Each permeate exhaust conduit defines an exhaust channel and one or more openings allowing fluid communication between an exterior surface of the permeate exhaust conduit and the exhaust channel, said permeate exhaust conduits independently defining a cavity between said conduits. The cavity is configured to accommodate a first portion of a membrane stack assembly comprising at least one feed carrier layer, at least two permeate carrier layers, and at least two membrane layers. A first portion of the membrane stack assembly is disposed within the cavity, and a second portion of the membrane stack assembly is wound around the central core element and forms a multilayer membrane assembly disposed around the central core element.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Philip Paul Beauchamp, Michael Kent Cueman, Daniel Jason Erno, Todd Alan Anderson, Dean David Marschke
  • Publication number: 20150052898
    Abstract: A component formed by an additive manufacturing process includes a body and a first vibration damper. The body is formed from an additive manufacturing material, and defines at least a first cavity completely enclosed within the body. The first vibration damper is disposed within the first cavity. The first vibration damper includes a flowable medium and a first solidified element formed from the additive manufacturing material. The flowable medium surrounds the first solidified element.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicant: General Electric Company
    Inventors: Daniel Jason Erno, Robert Arvin Hedeen, Prabhjot Singh
  • Patent number: 8961790
    Abstract: A novel separator assembly for a spiral flow reverse osmosis apparatus is provided. In one embodiment, the separator assembly comprises a central core element comprising at least one permeate exhaust conduit and at least one concentrate exhaust conduit. Each exhaust conduit defines an exhaust channel and one or more openings allowing fluid communication between an exterior surface of the exhaust conduit and the exhaust channel, said exhaust conduits independently defining a cavity between said conduits. The cavity is configured to accommodate a first portion of a membrane stack assembly comprising at least one feed carrier layer, at least one permeate carrier layer, and at least one membrane layer. A first portion of the membrane stack assembly is disposed within the cavity, and a second portion of the membrane stack assembly is wound around the central core element and forms a multilayer membrane assembly disposed around the central core element.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Philip Paul Beauchamp, Michael Kent Cueman, Daniel Jason Erno, Todd Alan Anderson, Dean David Marschke
  • Publication number: 20150010403
    Abstract: An aerodynamic hub assembly for a wind turbine is disclosed. The hub assembly may include a hub extension, a rotor blade having a blade root and a blade tip, and a hub airfoil section mounted at least partially over the hub extension. The hub airfoil section may be fixed relative to the rotor blade or may be configured to rotate about a common pitch axis with the rotor blade. The hub extension may be connected to and extend radially from a center of the hub assembly. Further, the hub assembly may include a pitch bearing having an inner race and an outer race, wherein the pitch bearing may be coupled between the hub extension and the blade root. Additionally, the hub assembly may also include an aerodynamically-shaped spinner, wherein the spinner may house at least a portion of a root structure extending radially from the center of the hub assembly.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 8, 2015
    Inventors: Ian David Wilson, Kevin Wayne Kinzie, James Henry Madge, Daniel Jason Erno, Michael Colan Moscinski, Zaeem Ashraf Khan, Dmytro Floriyovych Opaits
  • Patent number: 8929071
    Abstract: A cooling device includes a ceramic substrate with a metal layer bonded to an outer planar surface. The cooling device also includes a channel layer bonded to an opposite side of the ceramic substrate and a manifold layer bonded to an outer surface of the channel layer. The substrate layers are bonded together using a high temperature process such as brazing to form a single substrate assembly. A plenum housing is bonded to the single substrate assembly via a low temperature bonding process such as adhesive bonding and is configured to provide extended manifold layer inlet and outlet ports.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 6, 2015
    Assignee: General Electric Company
    Inventors: Richard Alfred Beaupre, Ljubisa Dragoljub Stevanovic, Daniel Jason Erno, Charles Gerard Woychik
  • Patent number: D818093
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: May 15, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Daniel Jason Erno, William Dwight Gerstler