Patents by Inventor Daniel Keith Van Ostrand

Daniel Keith Van Ostrand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11983344
    Abstract: A touch screen display includes a display, a video graphics processing module, electrodes integrated into at least a portion of the display, and drive-sense circuits coupled to the electrodes. The drive-sense circuits, when enabled and concurrent with the display rendering frames of data into the visible images, detect changes in electrical characteristics of electrodes. At least some drive-sense circuits monitor sensor signals on at least some electrodes. A sensor signal includes a drive signal component and a receive signal component. The at least some drive-sense circuits generate the drive signal components of the sensor signals. The receive signal component is a representation of a change in an electrical characteristic of an electrode of the at least some electrodes when a corresponding drive signal component is applied to the electrode. The change in the electrical characteristic of the electrode is indicative of a proximal touch to the touch screen display.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: May 14, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11982715
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: May 14, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11984902
    Abstract: A digital decimation filtering circuit of an analog to digital conversion circuit includes an n-tap anti-aliasing filter operable to receive a 1-bit analog to digital converter (ADC) output signal at an oversampling rate and filter the 1-bit ADC output signal to remove frequencies higher than a selected cut-off frequency to produce an n-bit filtered signal at a first data output rate. The digital decimation filtering circuit further includes a decimator operable to receive the n-bit filtered signal at the first data output rate, decimate the n-bit filtered signal by a decimation factor to produce a set of output signals, and sum the set of outputs to produce a decimated signal at a second data output rate. The first data output rate is greater than the second data output rate.
    Type: Grant
    Filed: May 25, 2023
    Date of Patent: May 14, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Grant Howard McGibney, Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand
  • Patent number: 11977120
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: May 7, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20240146836
    Abstract: A method for execution by a personal computing device includes detecting an incoming operation. The method further includes transmitting a notice of the incoming operation to a vehicle computing device via a screen-to-screen (STS) communication link. The method further includes receiving an accept message via the STS communication link from the vehicle computing device. The method further includes facilitating the incoming operation via one or more of: one or more inbound STS channels for inbound STS signals and one or more outbound STS channels for outbound STS signals.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Timothy W. Markison
  • Publication number: 20240143801
    Abstract: A method for execution by a vehicle computing system includes establishing a screen-to-screen (STS) communication link with a personal computing device. The method further includes detecting a requested operation of the personal computing device. The method further includes determining whether the requested operation is allowed based on one or more of: operational status of the vehicle, a type of the requested operation, and targeted vehicle occupant. The method further includes, when the requested operation is allowed, establishing one or more of: one or more inbound STS channels for inbound STS signals and one or more outbound STS channels for outbound STS signals. The method further includes facilitating the requested operation via the one or more of: the one or more inbound STS channels and the one or more outbound STS channels.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Timothy W. Markison
  • Patent number: 11972075
    Abstract: An electronic pen includes a primary conductor, a secondary conductor, and shielding between the primary and secondary conductor. The electronic pen further includes two or more orientation capacitors and a raw data circuit. The raw data circuit includes two or more drive-sense circuits coupled to the two or more orientation capacitors, where a first drive-sense circuit is operable to produce a first error signal corresponding to an electrical characteristic of a first orientation capacitor, where a second drive-sense circuit of the two or more drive-sense circuits is operable to produce a second error signal corresponding to an electrical characteristic of the second orientation capacitor, and one or more subtraction modules. A first subtraction module is operable to subtract the first and second error signal to produce a first difference error signal. The first different error signal is representative of tilt orientation data of the electronic pen.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: April 30, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Daniel Keith Van Ostrand
  • Patent number: 11971762
    Abstract: A power supply signal conditioning system includes a power supply, one or more loads, and a drive-sense circuit (DSC). The power supply is operably coupled to one or more loads. When enabled, the power supply configured to output a power supply signal having a DC (direct current) voltage component and a ripple voltage component that is based on conversion of an AC (alternating current) signal in accordance with generating the power supply signal. The DSC is operably coupled to the power supply. When enabled, the DSC is configured simultaneously to sense the power supply signal and, based on sensing of the power supply signal, adaptively to process the power supply signal in accordance with reducing or eliminating the ripple voltage component of the power supply signal to generate a conditioned power supply signal to service the one or more loads.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11971703
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11971704
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Grant
    Filed: February 2, 2023
    Date of Patent: April 30, 2024
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11971761
    Abstract: A power supply signal conditioning system includes a power supply, one or more loads, and a drive-sense circuit (DSC). The power supply is operably coupled to one or more loads. When enabled, the power supply configured to output a power supply signal having a DC (direct current) voltage component and a ripple voltage component that is based on conversion of an AC (alternating current) signal in accordance with generating the power supply signal. The DSC is operably coupled to the power supply. When enabled, the DSC is configured simultaneously to sense the power supply signal and, based on sensing of the power supply signal, adaptively to process the power supply signal in accordance with reducing or eliminating the ripple voltage component of the power supply signal to generate a conditioned power supply signal to service the one or more loads.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11972085
    Abstract: A touchscreen display includes one or more conductive layers that is implemented for a touch sensor and a common portion. The touch screen display may include as few as one conductive layer that is partitioned for both the touch sensor and the common portion in some examples. A first conductor of the touch sensor is composed of first segments(s) that are electrically connected, and a second conductor of the touch sensor is composed of a second segments(s) that are electrically connected. Also, the common portion includes a third conductor. Drive-sense circuits (DSCs) are respectively implemented to service the conductors and to generate digital signals representative of electrical characteristics of signals provided to those conductors. Processing module(s) is/are configured to execute operational instructions to process the digital signals to facilitate operation of the touchscreen display including to detect presence, interaction, and/or gestures, etc. of a user with the touchscreen display.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE
    Inventors: Daniel Keith Van Ostrand, Patrick Troy Gray
  • Patent number: 11974105
    Abstract: A noise canceling audio in/out device includes an audible in/out transducer operable to convert an audible noise signal to a noise signal and convert an audio transmit (TX) signal to an audible output signal. A transducer signal of the audible in/out transducer generated by the audio TX signal is affected by the noise signal. The noise canceling audio in/out device further includes a noise canceling circuit operable to convert a digital TX signal to a TX reference signal, compare the transducer signal with the TX reference signal to produce an analog comparison signal, where the analog comparison signal includes a representation of the audio TX signal and the noise signal, and regulate the transducer signal to substantially match the TX reference signal to remove the effect of the noise signal on the transducer signal.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Phuong Huynh, Daniel Keith Van Ostrand, Patrick Troy Gray
  • Patent number: 11966548
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: April 23, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Patent number: 11966526
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: April 23, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11953564
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11954321
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11954057
    Abstract: A method includes determining, by one or more processing entities associated with at least one of: one or more low voltage drive circuits (LVDCs) and one or more other LVDCs, an initial data conveyance scheme and an initial communication scheme for each communication of a plurality of communications on one or more lines of a bus. The method further includes determining a desired number of channels for each communication of the plurality of communications based on the initial data conveyance scheme and the initial communication scheme, a desired total number of channels for the plurality of communications based on the desired number of channels, determining whether the desired total number of channels for the plurality of communications exceeds a total number of available channels. If not, allocating the desired number of channels to each communication of the plurality of communications in accordance with the channel allocation mapping.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11953563
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11949244
    Abstract: A device operative to transfer power wirelessly includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s). The DSC generates a drive signal based on a reference signal and provides the drive signal to a first coil via a single line and via a resonating capacitor, and simultaneously senses the drive signal via the single line, to facilitate electromagnetic coupling to a second coil to transfer power wirelessly to another device. The DSC also detects electrical characteristic(s) of the drive signal. The processing module(s) generates the reference signal and processes the digital signal to determine the electrical characteristic(s) of the drive signal. In some examples, the processing module(s) adapts the reference signal based on detection of the other device (e.g., based on interpreting the electrical characteristic(s) of the drive signal).
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: April 2, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Daniel Keith Van Ostrand, Phuong Huynh