Patents by Inventor Daniel P. Hagewiesche

Daniel P. Hagewiesche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8563794
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of extending the life of an aromatization catalyst comprising predicting a rapid deactivation threshold (RDT) for an aromatization reactor by employing the catalyst in a reactor system under an accelerated fouling condition to identify a test rapid deactivation threshold (t-RDT), predicting the RDT for the aromatization reactor based upon the t-RDT, and oxidizing the catalyst prior to the predicted RDT to extend the Time on Stream of the aromatization catalyst.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 22, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Publication number: 20130066125
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of extending the life of an aromatization catalyst comprising predicting a rapid deactivation threshold (RDT) for an aromatization reactor by employing the catalyst in a reactor system under an accelerated fouling condition to identify a test rapid deactivation threshold (t-RDT), predicting the RDT for the aromatization reactor based upon the t-RDT, and oxidizing the catalyst prior to the predicted RDT to extend the Time on Stream of the aromatization catalyst.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 14, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Scott H. BROWN, Tin-Tack Peter CHEUNG, Daniel P. HAGEWIESCHE, Baiyi ZHAO
  • Patent number: 8288603
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 16, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Publication number: 20110190558
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Application
    Filed: December 7, 2010
    Publication date: August 4, 2011
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Scott H. BROWN, Tin-Tack Peter CHEUNG, Daniel P. HAGEWIESCHE, Baiyi ZHAO
  • Patent number: 7868217
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: January 11, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Publication number: 20090124840
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Patent number: 6602483
    Abstract: A improved hydrocarbon conversion process, comprising applying a plating, cladding, paint or other coating to at least a portion of a hydrocarbon conversion reactor system which is used to convert hydrocarbons to products in the presence of steam, said coating being effective to reduce the amount of undesirable by-products in said process; and operating the hydrocarbon conversion process at a steam to hydrocarbon ratio that is lower than the steam to hydrocarbon ratio at which said process was operated prior to applying said coating. Preferred hydrocarbon conversion process includes steam cracking of hydrocarbons to produce ethylene and dehydrogenation of ethylbenzene to styrene.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: August 5, 2003
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John V. Heyse, Daniel P. Hagewiesche, Paul M. Spindler
  • Patent number: 6551660
    Abstract: A method for reducing catalyst contamination in a hydrocarbon conversion reactor system, comprising the steps of contacting at least a portion of a metal-coated hydrocarbon conversion reactor system comprising a reactive metal with a getter to produce a movable metal; and fixating the movable metal.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: April 22, 2003
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Dennis L. Holtermann, Hong Chiu Chen, Richard M Wolpert, Charles R. Wilson, Daniel P. Hagewiesche
  • Patent number: 6548030
    Abstract: Disclosed is a method for reforming hydrocarbons comprising contacting the hydrocarbons with a catalyst in a reactor system of improved resistance to carburization and metal dusting under conditions of low sulfur.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: April 15, 2003
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, Gale L. Hubred, Steven C. Moore, Paul F. Bryan, Robert L. Hise, Steven E. Trumbull, Randall J. Harris
  • Publication number: 20020179495
    Abstract: Disclosed is a method for reforming hydrocarbons comprising contacting the hydrocarbons with a catalyst in a reactor system of improved resistance to carburization and metal dusting under conditions of low sulfur.
    Type: Application
    Filed: September 10, 2001
    Publication date: December 5, 2002
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, Gale L. Hubred, Steven C. Moore, Paul F. Bryan, Robert L. Hise, Steven E. Trumbull, Randall J. Harris
  • Patent number: 6419986
    Abstract: A method of removing reactive metal from a metal-coated reactor system, comprising contacting at least a portion of a metal-coated reactor system containing reactive metal with a getter to produce movable metal, and fixating the movable metal, the getter, or both. The contacting is preferably done prior to catalyst loading. A preferred coating metal comprises tin and a preferred getter comprises HCl. The invention is also a method for reducing catalyst contamination from a metal which was used to coat a reactor system. The method comprises contacting a metal-coated reactor system, with a gaseous halogen-containing compound to produce movable metal; thereafter or simultaneously, at least a portion of the movable metal is removed from the reactor system. Then a halided catalyst is loaded into the reactor system.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: July 16, 2002
    Assignee: Chevron Phillips Chemical Company IP
    Inventors: Dennis L. Holtermann, Hong Chiu Chen, Richard M Wolpert, Charles R. Wilson, Daniel P. Hagewiesche
  • Publication number: 20020043479
    Abstract: A improved hydrocarbon conversion process, comprising applying a plating, cladding, paint or other coating to at least a portion of a hydrocarbon conversion reactor system which is used to convert hydrocarbons to products in the presence of steam, said coating being effective to reduce the amount of undesirable by-products in said process; and operating the hydrocarbon conversion process at a steam to hydrocarbon ratio that is lower than the steam to hydrocarbon ratio at which said process was operated prior to applying said coating. Preferred hydrocarbon conversion process includes steam cracking of hydrocarbons to produce ethylene and dehydrogenation of ethylbenzene to styrene.
    Type: Application
    Filed: June 21, 2001
    Publication date: April 18, 2002
    Applicant: Chevron Phillips Chemical Company LP.
    Inventors: John V. Heyse, Daniel P. Hagewiesche, Paul M. Spindler
  • Publication number: 20010031313
    Abstract: A method of removing reactive metal from a metal-coated reactor system, comprising contacting at least a portion of a metal-coated reactor system containing reactive metal with a getter to produce movable metal, and fixating the movable metal, the getter, or both. The contacting is preferably done prior to catalyst loading. A preferred coating metal comprises tin and a preferred getter comprises HCl.
    Type: Application
    Filed: April 20, 2001
    Publication date: October 18, 2001
    Applicant: Chevron Phillips Chemical Corporation LC.
    Inventors: Dennis L. Holtermann, Hong Chiu Chen, Richard M. Wolpert, Charles R. Wilson, Daniel P. Hagewiesche
  • Patent number: 6274113
    Abstract: A improved hydrocarbon conversion process, comprising applying a plating, cladding, paint or other coating to at least a portion of a hydrocarbon conversion reactor system which is used to convert hydrocarbons to products in the presence of steam, said coating being effective to reduce the amount of undesirable by-products in said process; and operating the hydrocarbon conversion process at a steam to hydrocarbon ratio that is lower than the steam to hydrocarbon ratio at which said process was operated prior to applying said coating. Preferred hydrocarbon conversion process includes steam cracking of hydrocarbons to produce ethylene and dehydrogenation of ethylbenzene to styrene.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: August 14, 2001
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John V. Heyse, Daniel P. Hagewiesche, Paul M. Spindler
  • Patent number: 6139909
    Abstract: A process for producing a metallic protective layer whereby a metal-containing plating, cladding, paint or other coating is applied to at least a portion of a reactor system and then contacted with a gaseous stream containing hydrocarbons, such as impure hydrogen, thereby producing a continuous and adherent metallic protective layer. The gaseous stream preferably comprises hydrogen, which may be recycled. A preferred embodiment of the invention is directed to touch-up procedures where a portion of an already protected reactor system is replaced or rewelded and the protective layer is formed as the replaced portion is brought on-stream.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: October 31, 2000
    Assignee: Chevron Chemical Company
    Inventor: Daniel P. Hagewiesche
  • Patent number: 5866743
    Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of added sulfur.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: February 2, 1999
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer
  • Patent number: 5863418
    Abstract: Disclosed is a method for reforming hydrocarbons comprising contacting the hydrocarbons with a catalyst in a reactor system of improved resistance to carburization and metal dusting under conditions of low sulfur.
    Type: Grant
    Filed: February 9, 1996
    Date of Patent: January 26, 1999
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, Gale L. Hubred, Steven C. Moore, Paul F. Bryan, Robert L. Hise, Steven E. Trumbull, Randall J. Harris, Alan G. Kunze
  • Patent number: 5849969
    Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of sulfur.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 15, 1998
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer
  • Patent number: 5658452
    Abstract: A improved hydrocarbon conversion process, comprising applying a plating, cladding, paint or other coating to at least a portion of a hydrocarbon conversion reactor system which is used to convert hydrocarbons to products in the presence of steam, said coating being effective to reduce the amount of undesirable by-products in said process; and operating the hydrocarbon conversion process at a steam to hydrocarbon ratio that is lower than the steam to hydrocarbon ratio at which said process was operated prior to applying said coating. Preferred hydrocarbon conversion process includes steam cracking of hydrocarbons to produce ethylene and dehydrogenation of ethylbenzene to styrene.
    Type: Grant
    Filed: June 29, 1995
    Date of Patent: August 19, 1997
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Daniel P. Hagewiesche, Paul M. Spindler
  • Patent number: RE38532
    Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of added sulfur.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: June 8, 2004
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer