Patents by Inventor Daniel Patrick Kerns

Daniel Patrick Kerns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117756
    Abstract: A flow path assembly for a gas turbine engine is provided. The flow path assembly may include an outer casing comprising a metal material having a first coefficient of thermal expansion, a ceramic structure comprising a ceramic material having a second coefficient of thermal expansion, and a mounting component attached on a first end to the outer casing and attached on a second end to the ceramic structure. The mounting component may be constructed from at least two materials transitioning from the first end to the second end such that the coefficient of thermal expansion is different at the first end than the second end.
    Type: Application
    Filed: August 2, 2023
    Publication date: April 11, 2024
    Inventors: Daniel Patrick Kerns, Mark Eugene Noe, Dennis Paul Dry, Brandon ALlanson Reynolds
  • Patent number: 11739663
    Abstract: A flow path assembly for a gas turbine engine is provided. The flow path assembly may include an outer casing comprising a metal material having a first coefficient of thermal expansion, a ceramic structure comprising a ceramic material having a second coefficient of thermal expansion, and a mounting component attached on a first end to the outer casing and attached on a second end to the ceramic structure. The mounting component may be constructed from at least two materials transitioning from the first end to the second end such that the coefficient of thermal expansion is different at the first end than the second end.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: August 29, 2023
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Mark Eugene Noe, Dennis Paul Dry, Brandon ALlanson Reynolds
  • Patent number: 11441436
    Abstract: Flow path assemblies and methods for forming such flow path assemblies for gas turbine engines are provided. For example, a flow path assembly for a gas turbine engine has a boundary structure, an airfoil, and a locking feature. The boundary structure and the airfoil are formed from a composite material. The boundary structure defines an opening and a cutout proximate the opening, and the airfoil is sized to fit within the opening of the boundary structure. The locking feature is received within the cutout defined by the boundary structure to interlock the airfoil with the boundary structure.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: September 13, 2022
    Assignee: General Electric Company
    Inventors: David Alan Frey, Kirk Douglas Gallier, Daniel Patrick Kerns, Brandon ALlanson Reynolds
  • Publication number: 20220228744
    Abstract: Combustor dome assemblies having combustor deflectors are provided. For example, a combustor dome assembly comprises a combustor dome defining an opening; a ceramic matrix composite (CMC) deflector positioned adjacent the combustor dome on an aft side of the assembly; a fuel-air mixer defining a groove about an outer perimeter thereof; and a seal plate including a key. The CMC deflector includes a cup extending forward through the opening in the combustor dome that defines one or more bayonets and a slot. The bayonets are received in the fuel-air mixer groove, and the seal plate key is received in the CMC deflector slot. In another embodiment, where the seal plate may be omitted, a spring is positioned between the fuel-air mixer and the CMC deflector to hold the CMC deflector in place with respect to the combustor dome. Methods of assembling combustor dome assemblies having CMC deflectors also are provided.
    Type: Application
    Filed: February 25, 2022
    Publication date: July 21, 2022
    Inventors: Brandon ALlanson Reynolds, Matthew Mark Weaver, Daniel Patrick Kerns
  • Patent number: 11391171
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Patent number: 11262072
    Abstract: Combustor dome assemblies having combustor deflectors are provided. For example, a combustor dome assembly comprises a combustor dome defining an opening; a ceramic matrix composite (CMC) deflector positioned adjacent the combustor dome on an aft side of the assembly; a fuel-air mixer defining a groove about an outer perimeter thereof; and a seal plate including a key. The CMC deflector includes a cup extending forward through the opening in the combustor dome that defines one or more bayonets and a slot. The bayonets are received in the fuel-air mixer groove, and the seal plate key is received in the CMC deflector slot. In another embodiment, where the seal plate may be omitted, a spring is positioned between the fuel-air mixer and the CMC deflector to hold the CMC deflector in place with respect to the combustor dome. Methods of assembling combustor dome assemblies having CMC deflectors also are provided.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 1, 2022
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Matthew Mark Weaver, Daniel Patrick Kerns
  • Patent number: 11149569
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Brandon ALIanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Patent number: 11149575
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall defining an inner boundary of a flow path and a plurality of pockets therein, and a unitary outer wall defining an outer boundary of the flow path. The unitary outer wall includes combustor and turbine portions that are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils that each have an inner end radially opposite an outer end and define an internal cavity for receipt of a flow of cooling fluid. The inner end of each nozzle airfoil is received in one of the plurality of inner wall pockets and defines an outlet for the flow of cooling fluid to flow from the internal cavity to the pocket, which forms a fluid curtain to discourage fluid leakage from the flow path.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Brandon Alianson Reynolds
  • Patent number: 11015613
    Abstract: A shroud assembly includes a shroud segment and a hanger. In one exemplary aspect, the shroud segment has a shroud body extending substantially along a circumferential direction between a first end and a second end. The shroud body defines a radial centerline along the circumferential direction. A flange is attached to or integral with the shroud body. The flange is pivotally coupled with the hanger at a location spaced from the radial centerline of the shroud body.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: May 25, 2021
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Dennis Paul Dry, Megan Elizabeth Scheitlin, Alexander Martin Sener, Jason David Shapiro
  • Publication number: 20200378268
    Abstract: Flow path assemblies and methods for forming such flow path assemblies for gas turbine engines are provided. For example, a flow path assembly for a gas turbine engine has a boundary structure, an airfoil, and a locking feature. The boundary structure and the airfoil are formed from a composite material. The boundary structure defines an opening and a cutout proximate the opening, and the airfoil is sized to fit within the opening of the boundary structure. The locking feature is received within the cutout defined by the boundary structure to interlock the airfoil with the boundary structure.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: David Alan Frey, Kirk Douglas Gallier, Daniel Patrick Kerns, Brandon ALlanson Reynolds
  • Publication number: 20200333007
    Abstract: Combustor dome assemblies having combustor deflectors are provided. For example, a combustor dome assembly comprises a combustor dome defining an opening; a ceramic matrix composite (CMC) deflector positioned adjacent the combustor dome on an aft side of the assembly; a fuel-air mixer defining a groove about an outer perimeter thereof; and a seal plate including a key. The CMC deflector includes a cup extending forward through the opening in the combustor dome that defines one or more bayonets and a slot. The bayonets are received in the fuel-air mixer groove, and the seal plate key is received in the CMC deflector slot. In another embodiment, where the seal plate may be omitted, a spring is positioned between the fuel-air mixer and the CMC deflector to hold the CMC deflector in place with respect to the combustor dome. Methods of assembling combustor dome assemblies having CMC deflectors also are provided.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 22, 2020
    Inventors: Brandon ALlanson Reynolds, Matthew Mark Weaver, Daniel Patrick Kerns
  • Patent number: 10746035
    Abstract: Flow path assemblies and methods for forming such flow path assemblies for gas turbine engines are provided. For example, a method for assembling an airfoil with a boundary structure to form a flow path assembly is provided. The method includes machining an opening into the boundary structure. The opening is sized to receive an airfoil or other component. The method also includes machining a cutout into the boundary structure proximate the opening. A locking feature is inserted into the cutout. When the airfoil is inserted into the opening, the locking feature interlocks the airfoil with the boundary structure. To seal the airfoil with the boundary structure, the airfoil is pressed against or into the boundary structure. When the airfoil is pressed, the locking feature is compressed such that a seal is formed between the airfoil and the boundary structure to seal the flow path assembly.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventors: David Alan Frey, Kirk Douglas Gallier, Daniel Patrick Kerns, Brandon ALlanson Reynolds
  • Patent number: 10690347
    Abstract: Combustor dome assemblies having combustor deflectors are provided. For example, a combustor dome assembly comprises a combustor dome defining an opening; a ceramic matrix composite (CMC) deflector positioned adjacent the combustor dome on an aft side of the assembly; a fuel-air mixer defining a groove about an outer perimeter thereof; and a seal plate including a key. The CMC deflector includes a cup extending forward through the opening in the combustor dome that defines one or more bayonets and a slot. The bayonets are received in the fuel-air mixer groove, and the seal plate key is received in the CMC deflector slot. In another embodiment, where the seal plate may be omitted, a spring is positioned between the fuel-air mixer and the CMC deflector to hold the CMC deflector in place with respect to the combustor dome. Methods of assembling combustor dome assemblies having CMC deflectors also are provided.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 23, 2020
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Matthew Mark Weaver, Daniel Patrick Kerns
  • Publication number: 20200025009
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall defining an inner boundary of a flow path and a plurality of pockets therein, and a unitary outer wall defining an outer boundary of the flow path. The unitary outer wall includes combustor and turbine portions that are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils that each have an inner end radially opposite an outer end and define an internal cavity for receipt of a flow of cooling fluid. The inner end of each nozzle airfoil is received in one of the plurality of inner wall pockets and defines an outlet for the flow of cooling fluid to flow from the internal cavity to the pocket, which forms a fluid curtain to discourage fluid leakage from the flow path.
    Type: Application
    Filed: April 8, 2019
    Publication date: January 23, 2020
    Inventors: Daniel Patrick Kerns, Brandon ALIanson Reynolds
  • Publication number: 20200024999
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Application
    Filed: April 22, 2019
    Publication date: January 23, 2020
    Inventors: Brandon ALIanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Publication number: 20190338676
    Abstract: A flow path assembly for a gas turbine engine is provided. The flow path assembly may include an outer casing comprising a metal material having a first coefficient of thermal expansion, a ceramic structure comprising a ceramic material having a second coefficient of thermal expansion, and a mounting component attached on a first end to the outer casing and attached on a second end to the ceramic structure. The mounting component may be constructed from at least two materials transitioning from the first end to the second end such that the coefficient of thermal expansion is different at the first end than the second end.
    Type: Application
    Filed: June 27, 2019
    Publication date: November 7, 2019
    Inventors: Daniel Patrick Kerns, Mark Eugene Noe, Dennis Paul Dry, Brandon ALlanson Reynolds
  • Patent number: 10458260
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly defining a flow path through a gas turbine engine, as well as axial and radial directions that are orthogonal to one another and a circumferential direction extending about the axial direction, comprises a nozzle airfoil having a first end opposite a second end and a wall defining a flow path boundary. The wall has an opening therein through which the second end of the nozzle airfoil protrudes such that the second end extends outside of the flow path. The flow path assembly further comprises a cap extending over the second end of the nozzle airfoil and an attachment member extending through the second end and the cap to attach the second end to the cap. Other embodiments of a flow path assembly having nozzle airfoils decoupled from the flow path boundary also are provided.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: October 29, 2019
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Brandon ALlanson Reynolds, Mark Eugene Noe
  • Patent number: 10385709
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Brandon Allanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Patent number: 10385731
    Abstract: A flow path assembly for a gas turbine engine is provided. The flow path assembly may include an outer casing comprising a metal material having a first coefficient of thermal expansion, a ceramic structure comprising a ceramic material having a second coefficient of thermal expansion, and a mounting component attached on a first end to the outer casing and attached on a second end to the ceramic structure. The mounting component may be constructed from at least two materials transitioning from the first end to the second end such that the coefficient of thermal expansion is different at the first end than the second end.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Mark Eugene Noe, Dennis Paul Dry, Brandon ALlanson Reynolds
  • Publication number: 20190249556
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser