Patents by Inventor Daniel Paul Hashim

Daniel Paul Hashim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210273228
    Abstract: Electrodes, including anodes and/or cathodes, comprising a three-dimensional boron-doped carbon nanotube macro-material are disclosed. The anode and/or cathode can be prepared using chemical vapor deposition, using a metal foil, such as a copper foil, as a substrate, and in other embodiments, or can be adhered to a metal foil following preparation. The anode and/or cathode are porous, and a portion of the pores can be filled with appropriate anode or cathode active materials. Preferred active materials for the anode comprise lithium metal or lithium-containing alloys. Preferred active materials for the cathode comprise lithium salts, such as lithium oxide or lithium sulfide, Batteries, capacitors and supercapacitors comprising these anodes and/or cathodes are also disclosed.
    Type: Application
    Filed: June 18, 2019
    Publication date: September 2, 2021
    Applicant: 3D Nano Batteries, LLC
    Inventors: Daniel Paul Hashim, Christopher M. Faraguna
  • Publication number: 20190387587
    Abstract: A system and method are described for heating a substance (i.e., liquid, gas, and/or an absorbed solid) using a carbon nanostructured porous foam as a heat transfer material and an electronic heat source. In some embodiments, the heat source may be a microwave volumetric heating (MVH) system. The method for heating, vaporizing, or decomposing any of the desired substance may involve filtering or continuously flowing the substance through the carbon nanostructured porous foam heat transfer material, resulting in physical confinement or absorption of the substance, and subjecting the carbon nanostructure porous foam heat transfer material to sufficient electronic radiation.
    Type: Application
    Filed: November 23, 2016
    Publication date: December 19, 2019
    Inventor: Daniel Paul HASHIM
  • Patent number: 10421675
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading, to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and can soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: September 24, 2019
    Assignee: CSS Nanotech, Inc.
    Inventors: Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Publication number: 20190225516
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and can soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Applicant: CSS NANOTECH, INC.
    Inventors: Daniel Paul HASHIM, Pulickel M. AJAYAN, Mauricio TERRONES
  • Patent number: 10294133
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and an soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: May 21, 2019
    Assignee: CSS NANOTECH, INC.
    Inventors: Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Publication number: 20140077138
    Abstract: In some embodiments, the present invention pertains to fluid compositions that generally comprise: (1) a base fluid; and (2) boron nitride-based materials dispersed in the base fluid. In some embodiments, the boron nitride-based materials may include hexagonal boron nitride. In some embodiments, the boron nitride-based materials in the fluid compositions may be less than about 1% of the weight of the fluid composition. Additional embodiments of the present invention pertain to methods of making fluid compositions. Such methods generally include dispersing boron nitride-based materials in a base fluid, such as by mixing. In some embodiments, the methods of the present invention may also include steps of exfoliating or sonicating the bulk boron nitride-based materials followed by centrifugation and drying procedures.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 20, 2014
    Applicant: William Marsh Rice University
    Inventors: Jose Jaime Taha-Tijerina, Narayanan Tharangattu Narayanan, Pulickel Madhavapanicker Ajayan, Daniel Paul Hashim
  • Publication number: 20120238021
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and an soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 20, 2012
    Applicant: William Marsh Rice University
    Inventors: Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones