Patents by Inventor Daniel R. Palo

Daniel R. Palo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230381735
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Application
    Filed: March 28, 2023
    Publication date: November 30, 2023
    Inventors: Robert Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo, Robert A. Dagle
  • Patent number: 11623199
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 11, 2023
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo, Robert A. Dagle
  • Publication number: 20210322946
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo, Robert A. Dagle
  • Patent number: 11077418
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: August 3, 2021
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo, Robert A. Dagle
  • Publication number: 20180339283
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Application
    Filed: April 10, 2018
    Publication date: November 29, 2018
    Applicant: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo, Robert A. Dagle
  • Patent number: 9950305
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 24, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo, Robert A. Dagle
  • Patent number: 8696771
    Abstract: A compact integrated combustion reactor is described. In a preferred embodiment, the combustion catalyst is disposed in a staggered configuration such that the hot spot in an adjacent endothermic reaction chamber is substantially less than would occur with a conventional, unstaggered configuration. The integrated reactor may also include a methanation chamber for methanation of a reformate product. Systems containing reactant and product streams, and methods of conducting integrated combustion reactions are also described. A staggered catalyst conformation can be used more broadly for thermal chemical reactions requiring heat transfer in a layered device.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: April 15, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Daniel R. Palo, Jamelyn D. Holladay, Robert A. Dagle, Robert T. Rozmiarek
  • Publication number: 20130108780
    Abstract: A method of making a thin film is disclosed. A solution is dispensed on a substrate. The solution is spread into a thin layer with a hydrophilic material. The substrate or the hydrophilic material is moved relative to the other. In one embodiment, a thin film grows on the substrate by chemical reaction with the solution. In an alternative embodiment, the solution is evaporated, leaving behind a particulate film.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Sudhir Ramprasad, Daniel R. Palo
  • Publication number: 20130025192
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo
  • Publication number: 20110203772
    Abstract: A system and method for performing heat dissipation is disclosed that includes contacting a heat transfer liquid with a heat exchange surface having raised hydrophilic nanoporous nanostructures disposed adjacent a central core upon a substrate. The heat transfer liquid forms a preselected contact angle when placed on the heat exchange surface. The raised nanoporous nanostructures define channels, interconnected pathways, and voids within the nanoporous nanostructures. The nanoporous nanostructures have additional surface irregularities upon the nanostructures themselves. The nanostructures are preferably formed by depositing metal oxides or other materials upon a substrate using a Microreactor Assisted Nanomaterial Deposition (MAND) process.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 25, 2011
    Applicants: BATTELLE MEMORIAL INSTITUTE, OREGON STATE UNIVERSITY
    Inventors: Terry J. Hendricks, Chih-Hung Chang, Daniel R. Palo, Brian K. Paul
  • Publication number: 20090297435
    Abstract: The invention describes combustors and steam reformers and methods of combustion and steam reforming. For example, integrated combustion reactors are described in which heat from combustion is transferred to an endothermic reaction. Thermally efficient reactors and methods of alcohol steam reforming are also described. Also described is an integrated combustor/reformer containing a methanation catalyst.
    Type: Application
    Filed: August 9, 2009
    Publication date: December 3, 2009
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jamelyn D. Holladay, Yong Wang, Jianli Hu, Ya-Huei Chin, Robert A. Dagle, Guanguang Xia, Eddie G. Baker, Daniel R. Palo, Max Phelps, Heon Jung
  • Patent number: 7585472
    Abstract: The invention describes combustors and steam reformers and methods of combustion and steam reforming. For example, integrated combustion reactors are described in which heat from combustion is transferred to an endothermic reaction. Thermally efficient reactors and methods of alcohol steam reforming are also described. Also described is an integrated combustor/reformer containing a methanation catalyst.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: September 8, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Jamelyn D. Holladay, Yong Wang, Jianli Hu, Ya-Huei Chin, Robert A. Dagle, Guanguang Xia, Eddie G. Baker, Daniel R. Palo, Max Phelps, Heon Jung
  • Patent number: 7563390
    Abstract: The present invention provides steam reforming catalyst compositions containing Pd and Zn, and methods of steam reforming alcohols over a catalyst. Surprisingly superior results and properties of the present invention, including low temperature activity and/or low carbon monoxide output, are also described. Methods of making a steam reforming catalyst are also provided.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 21, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Jamelyn D. Holladay, Yong Wang, Jianli Hu, Ya-Huei Chin, Robert A. Dagle, Guanguang Xia, Eddie G. Baker, Daniel R. Palo, Max R. Phelps, Heon Jung
  • Patent number: 7208136
    Abstract: The present invention provides steam reforming catalyst compositions containing Pd and Zn, and methods of steam reforming alcohols over a catalyst. Surprisingly superior results and properties of the present invention, including low temperature activity and/or low carbon monoxide output, are also described. Methods of making a steam reforming catalyst are also provided.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: April 24, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Jamelyn D. Holladay, Yong Wang, Jianli Hu, Ya-Huei Chin, Robert A. Dagle, Guanguang Xia, Eddie G. Baker, Daniel R. Palo, Max R. Phelps, Heon Jung
  • Publication number: 20040223908
    Abstract: The invention describes combustors and steam reformers and methods of combustion and steam reforming. For example, integrated combustion reactors are described in which heat from combustion is transferred to an endothermic reaction. Thermally efficient reactors and methods of alcohol steam reforming are also described. Also described is an integrated combustor/reformer containing a methanation catalyst.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Inventors: Jamelyn D. Holladay, Yong Wang, Jianli Hu, Ya-Huei Chin, Robert A. Dagle, Guanguang Xia, Eddie G. Baker, Daniel R. Palo, Max Phelps, Heon Jung