Patents by Inventor Daniel S. Levi

Daniel S. Levi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10835400
    Abstract: An apparatus and method for a micro-patterned thin film Nitinol (TFN) that is used as a cover for an expandable stent structure, and has elongation/expansion properties that are configured to match the elongation/expansion properties of the expandable stent structure is presented.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: November 17, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Greg Carman, Daniel S. Levi, Mohanchandra Kotekar Panduranga, Fernando Vinuela, Abdon E. Sepulveda
  • Publication number: 20180369002
    Abstract: An apparatus and method for a micro-patterned thin film Nitinol (TFN) that is used as a cover for an expandable stent structure, and has elongation/expansion properties that are configured to match the elongation/expansion properties of the expandable stent structure is presented.
    Type: Application
    Filed: August 16, 2018
    Publication date: December 27, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Greg Carman, Daniel S. Levi, Mohanchandra Kotekar Panduranga, Fernando Vinuela, Abdon E. Sepulveda
  • Patent number: 10085862
    Abstract: An apparatus and method for a micro-patterned thin film Nitinol (TFN) that is used as a cover for an expandable stent structure, and has elongation/expansion properties that are configured to match the elongation/expansion properties of the expandable stent structure is presented.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: October 2, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Greg Carman, Daniel S. Levi, Mohanchandra Kotekar Panduranga, Fernando Vinuela, Abdon E. Sepulveda
  • Patent number: 9833309
    Abstract: A vascular implant, comprising a sheet comprising thin film nickel titanium (NiTi), wherein the sheet has at least one super-hydrophilic surface having a water contact angle of less than approximately 5 degrees. The sheet is configured to have a compacted form having a first internal diameter and a deployed form having a second internal diameter larger than the first internal diameter. The sheet may be delivered into a blood vessel in the compacted form and expanded to its deployed form at a treatment location within the blood vessel, wherein the stent is configured to expand onto an internal surface of the blood vessel and exert a radial force on said internal surface.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: December 5, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel S. Levi, Gregory P. Carman, Youngjae Chun, Fernando Vinuela
  • Patent number: 9730783
    Abstract: A flow diverter is described and fabricated using ultra-thin porous thin-film Nitinol, and is configured for implantation to a treatment site within a vessel for significant reduction in an intra-aneurismal flow velocity and vorticity. Using small size pores in a coverage area of only 10%, a 90% reduction in flow velocity into a pseudo-aneurysm can be achieved, with an almost immediate cessation of flow into an anatomical feature such as aneurysm sac in vivo. The size of the holes can be tailored to be any shape and range in size from 1-400 ?m using photolithography and from 5-1000 nm using ebeam lithography.
    Type: Grant
    Filed: November 3, 2012
    Date of Patent: August 15, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Gregory P. Carman, Daniel S. Levi, Youngjae Chun, Fernando Vinuela
  • Publication number: 20170095357
    Abstract: The various embodiments described herein include methods for fabricating thin- film flow diversion apparatuses. In one aspect, a method includes: (1) creating a plurality of trenches using photolithography and deep reactive ion etching on a substrate; (2) depositing a metal sacrificial layer on the substrate; (3) forming a Nitinol layer with a plurality of fenestrations by depositing Nitinol on the metal sacrificial layer; (4) forming a thin-film of Nitinol by removing the metal sacrificial layer; (5) crystallizing the thin-film of Nitinol; and (6) elongating the thin-film of Nitinol.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 6, 2017
    Inventors: Gregory P. Carman, Daniel S. Levi, Youngjae Chun, Fernando Vinuela
  • Publication number: 20160000553
    Abstract: A thin film nitinol stent cover is provided that includes a plurality of fenestrations. Each fenestration extends in both longitudinal and transverse dimension, wherein the longitudinal and transverse dimensions are both less than or equal to a critical dimension that inhibits muscle cell migration through the fenestrations.
    Type: Application
    Filed: February 25, 2014
    Publication date: January 7, 2016
    Inventors: Daniel S. LEVI, Gregory P. CARMAN, Youngjae CHUN, Allan W. TULLOCH, Colin KEALEY
  • Publication number: 20150366686
    Abstract: An apparatus and method for a micro-patterned thin film Nitinol (TFN) that is used as a cover for an expandable stent structure, and has elongation/expansion properties that are configured to match the elongation/expansion properties of the expandable stent structure is presented.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 24, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Greg Carman, Daniel S. Levi, Mohanchandra Kotekar Panduranga, Fernando Vinuela, Abdon E. Sepulveda
  • Publication number: 20140249614
    Abstract: A vascular implant, comprising a sheet comprising thin film nickel titanium (NiTi), wherein the sheet has at least one super-hydrophilic surface having a water contact angle of less than approximately 5 degrees. The sheet is configured to have a compacted form having a first internal diameter and a deployed form having a second internal diameter larger than the first internal diameter. The sheet may be delivered into a blood vessel in the compacted form and expanded to its deployed form at a treatment location within the blood vessel, wherein the stent is configured to expand onto an internal surface of the blood vessel and exert a radial force on said internal surface.
    Type: Application
    Filed: September 1, 2011
    Publication date: September 4, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel S. Levi, Gregory P. Carman, Youngjae Chun, Fernando Vinuela