Patents by Inventor Daniel Shedlock

Daniel Shedlock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11660359
    Abstract: Technology is described to uniformly apply doses of radiation to a target material. An irradiation device may comprise an enclosure configured to receive a target material and a source configured to emit primary radiation within the enclosure. The primary radiation may be configured to irradiate at least a first portion of the target material. The irradiation device may further comprise a scattering medium disposed within the enclosure. The scattering medium may be configured to produce secondary radiation through scatter interactions in response to the primary radiation, the secondary radiation configured to irradiate at least a second portion of the target material. A thickness of the scattering medium relative to the primary radiation may have a thickness of at least 3 millimeters).
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: May 30, 2023
    Assignee: Varex Imaging Corporation
    Inventors: Daniel Shedlock, David Nisius, Gregory Andrews, Jeff Adams
  • Publication number: 20230056945
    Abstract: An imaging system for inspecting multiple objects includes an x-ray source having a beam width greater than or equal to a threshold beam size. The multiple objects is irradiated by the x-ray source in respective controlled inspection positions. A detection mechanism is adapted to acquire respective images of the multiple objects in the respective controlled inspection positions. The detection mechanism includes one or more detectors arranged circumferentially around a central axis. At least one positioning mechanism is adapted to move the multiple objects into and out of the respective controlled inspection positions.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 23, 2023
    Applicant: Varex Imaging Corporation
    Inventors: Michael Stamm, David T. Nisius, Daniel Shedlock, Josh M. Star-Lack, Gregory C. Andrews, Matthias Ehrat
  • Publication number: 20220357289
    Abstract: An x-ray system, comprising: a backscatter detector, comprising: an x-ray conversion material; a plurality of sensors configured to generate electrical signals in combination with the x-ray conversion material in response to incident x-rays; and a collimator disposed on the x-ray conversion material and including a plurality of partitions extending away from the x-ray conversion material and the sensors and forming a plurality of openings, each opening corresponding to one of the sensors.
    Type: Application
    Filed: May 5, 2022
    Publication date: November 10, 2022
    Applicant: Varex Imaging Corporation
    Inventors: Daniel Shedlock, David T Nisius
  • Publication number: 20220331462
    Abstract: Technology is described to uniformly apply doses of radiation to a target material. An irradiation device may comprise an enclosure configured to receive a target material and a source configured to emit primary radiation within the enclosure. The primary radiation may be configured to irradiate at least a first portion of the target material. The irradiation device may further comprise a scattering medium disposed within the enclosure. The scattering medium may be configured to produce secondary radiation through scatter interactions in response to the primary radiation, the secondary radiation configured to irradiate at least a second portion of the target material. A thickness of the scattering medium relative to the primary radiation may have a thickness of at least 3 millimeters).
    Type: Application
    Filed: April 19, 2021
    Publication date: October 20, 2022
    Applicant: Varex Imaging Corporation
    Inventors: Daniel Shedlock, David Nisius, Gregory Andrews, Jeff Adams
  • Publication number: 20220003882
    Abstract: In a method of making pixelated scintillators, an amorphous scintillator material in a molten state is pressed into a plurality of cavities defined by a plurality of walls of a mesh array. The molten scintillator material in the plurality of cavities is cooled to form a pixelated scintillator array. An x-ray imager including a pixelated scintillator is also described.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Daniel Shedlock, Josh Star-Lack, Richard Mead
  • Patent number: 11156727
    Abstract: An imaging device includes: a scintillator layer; and an array of photodiode elements; wherein the scintillator layer is configured to receive radiation that has passed through the array of photodiode elements. An imaging device includes: a scintillator layer having a plurality of scintillator elements configured to convert radiation into photons; and an array of photodiode elements configured to receive photons from the scintillator layer, and generate electrical signals in response to the received photons; wherein at least two of the scintillator elements are separated by an air gap. An imaging device includes: a first scintillator layer having a plurality of scintillator elements arranged in a first plane; and a second scintillator layer having a plurality of scintillator elements arranged in a second plane; wherein the first scintillator layer and the second scintillator layer are arranged next to each other and form a non-zero angle relative to each other.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: October 26, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Daniel Shedlock, Josh M. Star-Lack, Daniel Morf, Eric Abel, Gary F. Virshup, Andre Meyer, Viktor Steinlin, Mingshan Sun
  • Patent number: 11079499
    Abstract: In a method of making pixelated scintillators, a block of an amorphous scintillator material is divided into plural sections. The plural sections of the block are rejoined with plural first reflective septa to form an assembly. In the assembly, each of the plural first reflective septa separates two adjacent sections of the block. The assembly is then divided into plural sections in a way such that each of the plural sections of the block is divided into plural pixels. The plural sections of the assembly are rejoined with plural second reflective septa. Each of the plural second reflective septa separates two adjacent sections of the assembly, forming an array comprising plural rows and columns of pixels of the amorphous scintillator material. In the array, each pixel is separated from adjacent pixels by a portion of at least one of the plural first reflective septa and at least one of the second reflective septa.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: August 3, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Daniel Shedlock, Josh M. Star-Lack, Adam Wang
  • Patent number: 10459091
    Abstract: A system operable for detecting radiation to scan an object includes scintillators that have respective lengths that are greater than their respective widths and an imager that has a planar array of pixels. The scintillators are coupled to the imager with their respective longitudinal axes parallel to each other. An incoming radiation beam that has passed through the object enters the scintillators through respective surfaces of the scintillators that are transverse to the longitudinal axes, and is converted by the scintillators into light that is received by respective subsets of the planar array of pixels.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 29, 2019
    Assignee: Varex Imaging Corporation
    Inventors: Daniel Shedlock, David T Nisius, Josh M Star-Lack, Samuel Donnald, Gary F Virshup, James E Clayton
  • Patent number: 10330798
    Abstract: In a method of making pixelated scintillators, a block of an amorphous scintillator material is divided into plural sections. The plural sections of the block are rejoined with plural first reflective septa to form an assembly. In the assembly, each of the plural first reflective septa separates two adjacent sections of the block. The assembly is then divided into plural sections in a way such that each of the plural sections of the block is divided into plural pixels. The plural sections of the assembly are rejoined with plural second reflective septa. Each of the plural second reflective septa separates two adjacent sections of the assembly, forming an array comprising plural rows and columns of pixels of the amorphous scintillator material. In the array, each pixel is separated from adjacent pixels by a portion of at least one of the plural first reflective septa and at least one of the second reflective septa.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: June 25, 2019
    Assignee: Varian Medical Systems, Inc.
    Inventors: Daniel Shedlock, Josh M. Star-Lack, Adam Wang
  • Publication number: 20190187301
    Abstract: In a method of making pixelated scintillators, a block of an amorphous scintillator material is divided into plural sections. The plural sections of the block are rejoined with plural first reflective septa to form an assembly. In the assembly, each of the plural first reflective septa separates two adjacent sections of the block. The assembly is then divided into plural sections in a way such that each of the plural sections of the block is divided into plural pixels. The plural sections of the assembly are rejoined with plural second reflective septa. Each of the plural second reflective septa separates two adjacent sections of the assembly, forming an array comprising plural rows and columns of pixels of the amorphous scintillator material. In the array, each pixel is separated from adjacent pixels by a portion of at least one of the plural first reflective septa and at least one of the second reflective septa.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Inventors: Daniel Shedlock, Josh M. Star-Lack, Adam Wang
  • Patent number: 10145966
    Abstract: A method of making pixelated scintillator arrays employs a first jig comprising a plurality of recesses and a second jig comprising a plurality of recesses. A plurality of or N scintillator pixels are placed in a plurality of or N recesses of the first jig. The N scintillator pixels have a shape such that a portion of each of the N scintillator pixels is conformably received in one of the N recesses of the first jig, e.g. a portion of each of the N scintillator pixels is received in and conforms to the shape of one of the N recesses. The remaining portion of each of the N scintillator pixels protrudes out from the recess, forming N protrusions substantially conforming to the shape of the recesses of the second jig. An adhesive layer is applied on the N protrusions of the N scintillator pixels. A reflective layer is placed over the N protrusions of the N scintillator pixels.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: December 4, 2018
    Assignee: Varian Medical Systems, Inc.
    Inventors: Daniel Shedlock, Keith Vaigneur
  • Publication number: 20180292547
    Abstract: In a method of making pixelated scintillators, an amorphous scintillator material in a molten state is pressed into a plurality of cavities defined by a plurality of walls of a mesh array. The molten scintillator material in the plurality of cavities is cooled to form a pixelated scintillator array. An x-ray imager including a pixelated scintillator is also described.
    Type: Application
    Filed: May 14, 2018
    Publication date: October 11, 2018
    Inventors: Daniel Shedlock, Josh Star-Lack, Richard Mead
  • Publication number: 20180095188
    Abstract: A system operable for detecting radiation to scan an object includes scintillators that have respective lengths that are greater than their respective widths and an imager that has a planar array of pixels. The scintillators are coupled to the imager with their respective longitudinal axes parallel to each other. An incoming radiation beam that has passed through the object enters the scintillators through respective surfaces of the scintillators that are transverse to the longitudinal axes, and is converted by the scintillators into light that is received by respective subsets of the planar array of pixels.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Daniel SHEDLOCK, David T NISIUS, Josh M STAR-LACK, Samuel DONNALD, Gary F VIRSHUP, James E CLAYTON
  • Publication number: 20170285183
    Abstract: In a method of making pixelated scintillators, a block of an amorphous scintillator material is divided into plural sections. The plural sections of the block are rejoined with plural first reflective septa to form an assembly. In the assembly, each of the plural first reflective septa separates two adjacent sections of the block. The assembly is then divided into plural sections in a way such that each of the plural sections of the block is divided into plural pixels. The plural sections of the assembly are rejoined with plural second reflective septa. Each of the plural second reflective septa separates two adjacent sections of the assembly, forming an array comprising plural rows and columns of pixels of the amorphous scintillator material. In the array, each pixel is separated from adjacent pixels by a portion of at least one of the plural first reflective septa and at least one of the second reflective septa.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 5, 2017
    Inventors: Daniel Shedlock, Josh M. Star-Lack, Adam Wang
  • Publication number: 20170097425
    Abstract: An imaging device includes: a scintillator layer; and an array of photodiode elements; wherein the scintillator layer is configured to receive radiation that has passed through the array of photodiode elements. An imaging device includes: a scintillator layer having a plurality of scintillator elements configured to convert radiation into photons; and an array of photodiode elements configured to receive photons from the scintillator layer, and generate electrical signals in response to the received photons; wherein at least two of the scintillator elements are separated by an air gap. An imaging device includes: a first scintillator layer having a plurality of scintillator elements arranged in a first plane; and a second scintillator layer having a plurality of scintillator elements arranged in a second plane; wherein the first scintillator layer and the second scintillator layer are arranged next to each other and form a non-zero angle relative to each other.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Applicants: VARIAN MEDICAL SYSTEMS INTERNATIONAL AG, VARIAN MEDICAL SYSTEMS, INC.
    Inventors: Daniel SHEDLOCK, Josh M. STAR-LACK, Daniel MORF, Eric ABEL, Gary F. VIRSHUP, Andre MEYER, Viktor STEINLIN, Mingshan SUN
  • Publication number: 20170097424
    Abstract: A method of making pixelated scintillator arrays employs a first jig comprising a plurality of recesses and a second jig comprising a plurality of recesses. A plurality of or N scintillator pixels are placed in a plurality of or N recesses of the first jig. The N scintillator pixels have a shape such that a portion of each of the N scintillator pixels is conformably received in one of the N recesses of the first jig, e.g. a portion of each of the N scintillator pixels is received in and conforms to the shape of one of the N recesses. The remaining portion of each of the N scintillator pixels protrudes out from the recess, forming N protrusions substantially conforming to the shape of the recesses of the second jig. An adhesive layer is applied on the N protrusions of the N scintillator pixels. A reflective layer is placed over the N protrusions of the N scintillator pixels.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Inventors: Daniel Shedlock, Keith Vaigneur
  • Publication number: 20170090042
    Abstract: In a method of making pixelated scintillators, an amorphous scintillator material in a molten state is pressed into a plurality of cavities defined by a plurality of walls of a mesh array. The molten scintillator material in the plurality of cavities is cooled to form a pixelated scintillator array. An x-ray imager including a pixelated scintillator is also described.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Daniel Shedlock, Josh Star-Lack, Richard Mead
  • Patent number: 9123450
    Abstract: A method and apparatus for inspecting an object is present. Radiation is emitted from a radiation source. A beam is formed from a portion of the radiation emitted by the radiation source using a collimator. The collimator is connected to the radiation source by a bearing system comprising a first structure associated with the radiation source and a second structure connected to the first structure. The second structure is configured to hold the collimator. The second structure of the bearing system is moved using a movement system such that the second structure rotates in one of a plurality of directions substantially about a center point in the radiation source while the radiation source remains stationary relative to the second structure. Rotation of the second structure substantially about the center point in the radiation source changes a direction in which the beam is directed.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 1, 2015
    Assignee: The Boeing Company
    Inventors: Michael Liesenfelt, William Talion Edwards, Daniel Shedlock
  • Patent number: 9086496
    Abstract: Methods and systems for scanning objects comprising scanning a portion of an object by a first radiation beam having a first value of a beam characteristic, such as the dose, and detecting the first radiation beam after interaction with the object by a first detector. It is determined whether to change the first value to a second value based, at least in part, on the detected first radiation beam. That portion of the object is then scanned by a second radiation beam having the first value or the second value based on the determination. The second radiation is detected after interacting with the object by a second detector. The second detector may have a second resolution greater than a first resolution of the first detector. The first and second radiation beams may be formed by first and second slots angled with respect to each other.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: July 21, 2015
    Assignee: Varian Medical Systems, Inc.
    Inventors: Daniel Shedlock, Timothy R. Fox, Josh Star-Lack, Richard E. Colbeth, Gary Virshup, James E. Clayton, David T. Nisius
  • Publication number: 20150139386
    Abstract: Methods and systems for scanning objects comprising scanning a portion of an object by a first radiation beam having a first value of a beam characteristic, such as the dose, and detecting the first radiation beam after interaction with the object by a first detector. It is determined whether to change the first value to a second value based, at least in part, on the detected first radiation beam. That portion of the object is then scanned by a second radiation beam having the first value or the second value based on the determination. The second radiation is detected after interacting with the object by a second detector. The second detector may have a second resolution greater than a first resolution of the first detector. The first and second radiation beams may be formed by first and second slots angled with respect to each other.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 21, 2015
    Applicant: Varian Medical Systems, Inc.
    Inventors: Josh STAR-LACK, Timothy R. Fox, Daniel Shedlock, Richard E. Colbeth, Gary Virshup, James E. Clayton, David T. Nisius