Patents by Inventor Daniel Tutuc

Daniel Tutuc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200013631
    Abstract: A semiconductor wafer having a main surface is provided. A first etch resistant mask is provided on the main surface. A first reactive ion etching step that forms a first group of trenches using the first etch resistant mask is performed. Each of the trenches in the first group is covered with a second etch resistant mask after performing the first reactive ion etching step. A second reactive ion etching step that forms a second group of trenches using one or both of the first etch resistant mask and the second etch resistant mask is performed. The trenches in the second group are laterally offset from the trenches in the first group. The first and second reactive ion etching processes are performed such that a depth of the trenches of the first group is substantially equal to a depth of the trenches in the second group.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Marija Borna Tutuc, Daniel Tutuc, Andrew Christopher Graeme Wood
  • Publication number: 20190123137
    Abstract: A method for forming a field-effect semiconductor device includes providing a wafer having a substantially compensated semiconductor layer extending to an upper side and including a semiconductor material which is co-doped with n-type dopants and p-type dopants. A peripheral area laterally surrounding an active area are defined in the wafer. Trenches in the active area are filled with a substantially intrinsic semiconductor material. More p-type dopants than n-type dopants are diffused from the compensated semiconductor layer into the intrinsic semiconductor material to form a plurality of p-type compensation regions in the trenches which are separated from each other by respective n-type drift portions. P-type dopants are introduced at least into a semiconductor zone of the peripheral area, so that the semiconductor zone and a dielectric layer on the upper side form an interface. A horizontal extension of the interface is larger than a vertical extension of the trenches.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Inventors: Daniel Tutuc, Christian Fachmann, Franz Hirler, Maximilian Treiber
  • Patent number: 10224394
    Abstract: According to an embodiment of a semiconductor substrate, the semiconductor substrate includes a superjunction structure in a device region of a semiconductor layer and an alignment mark in a kerf region of the semiconductor layer. The superjunction structure includes first regions and second regions of opposite conductivity types, the first and the second regions alternating along at least one horizontal direction. The alignment mark includes a vertical step formed by an alignment structure projecting or recessed from a main surface of the semiconductor layer. The alignment structure is of a material of the first regions of the superjunction structure.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 5, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20190058038
    Abstract: A method includes forming first regions of a first doping type and second regions of a second doping type in first and second semiconductor layers such that the first and second regions are arranged alternately in at least one horizontal direction of the first and second semiconductor layers, and forming a control structure with transistor cells each including at least one body region, at least one source region and at least one gate electrode in the second semiconductor layer. Forming the first and second regions includes: forming trenches in the first semiconductor layer and implanting at least one of first and second type dopant atoms into sidewalls of the trenches; forming the second semiconductor layer on the first semiconductor layer such that the second layer fills the trenches; implanting at least one of first and second type dopant atoms into the second semiconductor layer; and at least one temperature process.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 21, 2019
    Inventors: Hans Weber, Franz Hirler, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20190051529
    Abstract: Disclosed is a method that includes forming a plurality of semiconductor arrangements one above the other. In this method, forming each of the plurality of semiconductor arrangements includes: forming a semiconductor layer; forming a plurality of trenches in a first surface of the semiconductor layer; and implanting dopant atoms of at least one of a first type and a second type into at least one of a first sidewall and a second sidewall of each of the plurality of trenches of the semiconductor layer.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20180374741
    Abstract: Disclosed is a method. The method includes forming a trench structure with at least one first trench in a first section of a semiconductor body; forming a second trench that is wider than the first trench in a second section of the semiconductor body; and forming a semiconductor layer on a surface of the semiconductor body in the first section and the second section and in the at least one first trench and the second trench such that the semiconductor layer has a substantially planar surface above the first section and a residual trench remains above the second section. Forming the semiconductor layer includes forming a first epitaxial layer in a first epitaxial growth process and a second epitaxial layer on top of the first epitaxial layer in a second epitaxial growth process.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 27, 2018
    Inventors: Daniel Tutuc, Hans Weber
  • Patent number: 10157982
    Abstract: A field-effect semiconductor device includes a semiconductor body having a first semiconductor region of a first conductivity type, a first side, an edge delimiting the semiconductor body in a direction substantially parallel to the first side, an active area, and a peripheral area arranged between the active area and the edge. A first metallization is arranged on the first side, and a second metallization is arranged opposite the first metallization and in Ohmic connection with the first semiconductor region. In the active area, the semiconductor body further includes: a plurality of drift portions of the first conductivity type alternating with compensation regions of a second conductivity type, the drift portions being in Ohmic connection with the first semiconductor region, the compensation regions being in Ohmic connection with the first metallization and having in a vertical direction perpendicular to the first side a vertical extension.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: December 18, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Daniel Tutuc, Christian Fachmann, Franz Hirler, Maximilian Treiber
  • Patent number: 10109489
    Abstract: Disclosed is a method that includes forming a plurality of semiconductor arrangements one above the other. In this method, forming each of the plurality of semiconductor arrangements includes: forming a semiconductor layer; forming a plurality of trenches in a first surface of the semiconductor layer; and implanting dopant atoms of at least one of a first type and a second type into at least one of a first sidewall and a second sidewall of each of the plurality of trenches of the semiconductor layer.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: October 23, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20180158901
    Abstract: According to an embodiment of a semiconductor substrate, the semiconductor substrate includes a superjunction structure in a device region of a semiconductor layer and an alignment mark in a kerf region of the semiconductor layer. The superjunction structure includes first regions and second regions of opposite conductivity types, the first and the second regions alternating along at least one horizontal direction. The alignment mark includes a vertical step formed by an alignment structure projecting or recessed from a main surface of the semiconductor layer. The alignment structure is of a material of the first regions of the superjunction structure.
    Type: Application
    Filed: February 2, 2018
    Publication date: June 7, 2018
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20180061937
    Abstract: A field-effect semiconductor device includes a semiconductor body having a first semiconductor region of a first conductivity type, a first side, an edge delimiting the semiconductor body in a direction substantially parallel to the first side, an active area, and a peripheral area arranged between the active area and the edge. A first metallization is arranged on the first side, and a second metallization is arranged opposite the first metallization and in Ohmic connection with the first semiconductor region. In the active area, the semiconductor body further includes: a plurality of drift portions of the first conductivity type alternating with compensation regions of a second conductivity type, the drift portions being in Ohmic connection with the first semiconductor region, the compensation regions being in Ohmic connection with the first metallization and having in a vertical direction perpendicular to the first side a vertical extension.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Inventors: Daniel Tutuc, Christian Fachmann, Franz Hirler, Maximilian Treiber
  • Patent number: 9905639
    Abstract: By using a single trench mask, first and second trenches are formed that extend from a main surface into a semiconductor layer. A foundation is formed that includes first regions in and/or directly adjoining the first trenches. A superstructure is formed in alignment with the foundation by using position information directly obtained from structures formed in the first and/or the second trenches.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: February 27, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Patent number: 9887261
    Abstract: A charge-compensation semiconductor device includes a semiconductor body having a first surface, a lateral edge delimiting the semiconductor body in a horizontal direction substantially parallel to the first surface, an active area, and a peripheral area arranged between the active area and the lateral edge. A source metallization is arranged on the first surface. A drain metallization is arranged opposite to the source metallization. The semiconductor body further includes a drift region in Ohmic contact with the drain metallization, and a plurality of compensation regions forming respective pn-junctions with the drift region, which are arranged in the active area and in the peripheral area, and are in Ohmic contact with the source metallization via respective body regions arranged in the active area and having a higher doping concentration than the compensation regions.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: February 6, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20180019132
    Abstract: Disclosed is a method that includes forming a plurality of semiconductor arrangements one above the other. In this method, forming each of the plurality of semiconductor arrangements includes: forming a semiconductor layer; forming a plurality of trenches in a first surface of the semiconductor layer; and implanting dopant atoms of at least one of a first type and a second type into at least one of a first sidewall and a second sidewall of each of the plurality of trenches of the semiconductor layer.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 18, 2018
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Patent number: 9704984
    Abstract: A super-junction semiconductor device includes a junction termination area at a first surface of a semiconductor body and at least partly surrounding an active cell area. An inner part of the junction termination area is arranged between an outer part of the junction termination area and the active cell area. A charge compensation device structure includes first regions of a first conductivity type and second regions of a second conductivity type disposed alternately along a first lateral direction. First surface areas correspond to a projection of the first regions onto the first surface, and second surface areas correspond to a projection of the second regions onto the first surface. The super-junction semiconductor device further includes at least one of a first junction termination extension structure and a second junction termination extension structure.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: July 11, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Daniel Tutuc, Andreas Voerckel, Hans Weber
  • Patent number: 9704954
    Abstract: A semiconductor device comprises at least one strip-shaped cell compensation region of a vertical electrical element arrangement, at least one strip-shaped edge compensation region and a bridge structure. The at least one strip-shaped cell compensation regions extends into a semiconductor substrate and comprises a first conductivity type. Further, the at least one strip-shaped cell compensation region is connected to a first electrode structure of the vertical electrical element arrangement. The at least one strip-shaped edge compensation region extends into the semiconductor substrate within an edge termination region of the semiconductor device and outside the cell region. Further, the at least one strip-shaped edge compensation region comprises the first conductivity type. The bridge structure electrically connects the at least one strip-shaped edge compensation region with the at least one strip-shaped cell compensation region within the edge termination region.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: July 11, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Daniel Tutuc, Franz Hirler, Andreas Voerckel, Hans Weber
  • Publication number: 20170154956
    Abstract: By using a single trench mask, first and second trenches are formed that extend from a main surface into a semiconductor layer. A foundation is formed that includes first regions in and/or directly adjoining the first trenches. A superstructure is formed in alignment with the foundation by using position information directly obtained from structures formed in the first and/or the second trenches.
    Type: Application
    Filed: November 25, 2016
    Publication date: June 1, 2017
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20170005164
    Abstract: A charge-compensation semiconductor device includes a semiconductor body having a first surface, a lateral edge delimiting the semiconductor body in a horizontal direction substantially parallel to the first surface, an active area, and a peripheral area arranged between the active area and the lateral edge. A source metallization is arranged on the first surface. A drain metallization is arranged opposite to the source metallization. The semiconductor body further includes a drift region in Ohmic contact with the drain metallization, and a plurality of compensation regions forming respective pn-junctions with the drift region, which are arranged in the active area and in the peripheral area, and are in Ohmic contact with the source metallization via respective body regions arranged in the active area and having a higher doping concentration than the compensation regions.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 5, 2017
    Inventors: Hans Weber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20160322490
    Abstract: A super-junction semiconductor device includes a junction termination area at a first surface of a semiconductor body and at least partly surrounding an active cell area. An inner part of the junction termination area is arranged between an outer part of the junction termination area and the active cell area. A charge compensation device structure includes first regions of a first conductivity type and second regions of a second conductivity type disposed alternately along a first lateral direction. First surface areas correspond to a projection of the first regions onto the first surface, and second surface areas correspond to a projection of the second regions onto the first surface. The super-junction semiconductor device further includes at least one of a first junction termination extension structure and a second junction termination extension structure.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 3, 2016
    Inventors: Franz Hirler, Daniel Tutuc, Andreas Voerckel, Hans Weber
  • Patent number: 9484399
    Abstract: A charge-compensation semiconductor device includes a semiconductor body having a first surface, a lateral edge delimiting the semiconductor body in a horizontal direction substantially parallel to the first surface, an active area, and a peripheral area arranged between the active area and the lateral edge. A source metallization is arranged on the first surface. A drain metallization is arranged opposite to the source metallization. The semiconductor body further includes a drift region in Ohmic contact with the drain metallization, and a plurality of compensation regions forming respective pn-junctions with the drift region, which are arranged in the active area and in the peripheral area, and are in Ohmic contact with the source metallization via respective body regions arranged in the active area and having a higher doping concentration than the compensation regions.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: November 1, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20160240615
    Abstract: A semiconductor device comprises at least one strip-shaped cell compensation region of a vertical electrical element arrangement, at least one strip-shaped edge compensation region and a bridge structure. The at least one strip-shaped cell compensation regions extends into a semiconductor substrate and comprises a first conductivity type. Further, the at least one strip-shaped cell compensation region is connected to a first electrode structure of the vertical electrical element arrangement. The at least one strip-shaped edge compensation region extends into the semiconductor substrate within an edge termination region of the semiconductor device and outside the cell region. Further, the at least one strip-shaped edge compensation region comprises the first conductivity type. The bridge structure electrically connects the at least one strip-shaped edge compensation region with the at least one strip-shaped cell compensation region within the edge termination region.
    Type: Application
    Filed: February 11, 2016
    Publication date: August 18, 2016
    Inventors: Daniel Tutuc, Franz Hirler, Andreas Voerckel, Hans Weber