Patents by Inventor Daniel Wasserman

Daniel Wasserman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11371887
    Abstract: Systems and methods are provided for filtering coherent infrared light from a thermal background for protection of infrared (IR) imaging arrays and detection systems. A Michelson interferometer is used for coherent light filtering. In an implementation, a system includes a fixed mirror, a beam splitter, and a moving mirror which can be controlled translationally, as well as tip/tilt. The Michelson interferometer may be used as an imaging system. For imaging applications, a system may comprise a tunable array of micro-electromechanical systems (MEMS) mirrors. A mid-wave IR interferometer with electronic feedback and MEMS mirror array is provided.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: June 28, 2022
    Assignees: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, U.S. DEPARTMENT OF ENERGY
    Inventors: Daniel Wasserman, Eric A. Shaner
  • Publication number: 20210408324
    Abstract: Mid-IR light emitting diodes (LEDs) based on type-II quantum dot (QD) active regions grown with monolithically integrated semiconductor metal layers are provided. These LEDs comprise layers of type-II semiconductor (e.g., InGaSb) quantum dots integrated into a pn junction diode (e.g., InAs) grown above a highly doped backplane, such as an n++ InAs backplane, all in the same epitaxial growth. Aspects described herein minimize non-radiate recombination times and significantly increase radiative recombination rates by controlling the emission of the emitting QDs in the near field of an optical metal.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Inventors: Daniel Wasserman, Seth Bank, Andrew Briggs, Leland Nordin
  • Patent number: 11164985
    Abstract: A mid-infrared detector that uses a heavily doped material (e.g., indium arsenide) as a backplane to the detector structure to improve detector performance and fabrication cost. The infrared detector includes a substrate and a backplane of heavily doped material consisting of two or more of the following materials: indium, gallium, arsenic and antimony. The backplane resides directly on the substrate. The infrared detector further includes a photodetector (e.g., type-I or type-II strained layer superlattice (SLS) nBn photodetector, type-I or type-II SLS pn junction photodetector, a quantum-dot infrared photodetector, a quantum well infrared photodetector, a homogeneous material pn junction photodetector) residing directly on the backplane. Additionally, the infrared detector may include a metal structure residing directly on the photodetector. In this manner, the absorption of electromagnetic energy in the photodetector is enhanced.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: November 2, 2021
    Assignee: Board of Regents, The University of Texas System
    Inventor: Daniel Wasserman
  • Patent number: 11114738
    Abstract: Embodiments of the invention provide a resonant circuit including an active material substrate excitable by photon energy. A busline having a single input and a single output is located on the active material substrate. A RF resonator geometry is located on the active material substrate in electrical communication with the busline. Application of photon energy to the active material substrate changes the resonance of the RF resonator geometry at room temperatures. Alternately, a resonant circuit is provided that include a passive material substrate. An active material thin film is located on the passive material substrate. A busline having a single input and a single output and a RF resonator geometry located on the active material thin film. The RF resonator geometry is in electrical communication with the busline. Application of photon energy to the active material thin film changes the resonance of the RF resonator geometry at room temperatures.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 7, 2021
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Jeffery Allen, Monica Allen, Daniel Wasserman, Brett Wenner
  • Publication number: 20210025760
    Abstract: Systems and methods are provided for filtering coherent infrared light from a thermal background for protection of infrared (IR) imaging arrays and detection systems. A Michelson interferometer is used for coherent light filtering. In an implementation, a system includes a fixed mirror, a beam splitter, and a moving mirror which can be controlled translationally, as well as tip/tilt. The Michelson interferometer may be used as an imaging system. For imaging applications, a system may comprise a tunable array of micro-electromechanical systems (MEMS) mirrors. A mid-wave IR interferometer with electronic feedback and MEMS mirror array is provided.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 28, 2021
    Inventors: Daniel Wasserman, Eric A. Shaner
  • Publication number: 20200328320
    Abstract: A mid-infrared detector that uses a heavily doped material (e.g., indium arsenide) as a backplane to the detector structure to improve detector performance and fabrication cost. The infrared detector includes a substrate and a backplane of heavily doped material consisting of two or more of the following materials: indium, gallium, arsenic and antimony. The backplane re-sides directly on the substrate. The infrared detector further includes a photodetector (e.g., type-I or type-II strained layer superlattice (SLS) nBn photodetector, type-I or type-II SLS pn junction photodetector, a quantum-dot infrared photodetector, a quantum well infrared photodetector, a homogeneous material pn junction photodetector) residing directly on the backplane. Additionally, the infrared detector may include a metal structure residing directly on the photodetector. In this manner, the absorption of electromagnetic energy in the photodetector is enhanced.
    Type: Application
    Filed: August 21, 2018
    Publication date: October 15, 2020
    Inventor: Daniel Wasserman
  • Publication number: 20190006730
    Abstract: Embodiments of the invention provide a resonant circuit including an active material substrate excitable by photon energy. A busline having a single input and a single output is located on the active material substrate. A RF resonator geometry is located on the active material substrate in electrical communication with the busline. Application of photon energy to the active material substrate changes the resonance of the RF resonator geometry at room temperatures. Alternately, a resonant circuit is provided that include a passive material substrate. An active material thin film is located on the passive material substrate. A busline having a single input and a single output and a RF resonator geometry located on the active material thin film. The RF resonator geometry is in electrical communication with the busline. Application of photon energy to the active material thin film changes the resonance of the RF resonator geometry at room temperatures.
    Type: Application
    Filed: August 13, 2018
    Publication date: January 3, 2019
    Inventors: Jeffery Allen, Monica Allen, Daniel Wasserman, Brett Wenner
  • Publication number: 20120170114
    Abstract: Embodiments herein are directed to a metamaterial transmission filters including a metamaterial component and a upper medium positioned within proximity of the metamaterial component such that movement of the upper medium changes the resonances and optical transmission, reflection or absorption spectra of the filter. The upper material may be a natural material or a second metamaterial identical or non-identical to the metamaterial component. Embodiments herein are designed to allow both continuous tuning of the optical spectra of the assembly and/or discrete spectral switching.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 5, 2012
    Applicant: TRITON SYSTEMS, INC.
    Inventors: Lawrence H. Domash, Daniel Wasserman
  • Patent number: 8009356
    Abstract: A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: August 30, 2011
    Assignee: Sandia Corporation
    Inventors: Eric A. Shaner, Daniel Wasserman