Patents by Inventor Danielle Marie Mitchell

Danielle Marie Mitchell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220242962
    Abstract: The present disclosure provides antibodies that specifically bind to 4-1BB and/or OX40, including bispecific antibodies that bind to 4-1BB and OX40, and compositions comprising such antibodies. Also provided are methods for treating disorders, such as cancer, using such antibodies and compositions.
    Type: Application
    Filed: August 12, 2020
    Publication date: August 4, 2022
    Inventors: David Leonard BIENVENUE, Gabriela HERNANDEZ-HOYOS, Lynda MISHER, Danielle Marie MITCHELL, Michelle Hase NELSON, Peter PAVLIK
  • Publication number: 20220073606
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Application
    Filed: August 9, 2021
    Publication date: March 10, 2022
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T.L. Smith, John Latham
  • Patent number: 11225667
    Abstract: Methods for producing heterologous multi-subunit proteins in transformed cells are disclosed. In particular, the present disclosure provides improved methods of producing multi-subunit proteins, including antibodies and other multi-subunit proteins, which may or may not be secreted, with a higher yield and decreased production of undesired side-products. In exemplary embodiments, the transformed cells are a yeast, e.g., methylotrophic yeast such as Pichia pastoris.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 18, 2022
    Assignee: H. LUNDBECK A/S
    Inventors: Danielle Marie Mitchell, Leon F. Garcia-Martinez, Patricia Dianne McNeill, Ethan Wayne Ojala, Mehmet Inan, John Latham
  • Patent number: 11117960
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 14, 2021
    Assignee: H. LUNDBECK A/S
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T. L. Smith, John Latham
  • Publication number: 20200172611
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 4, 2020
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T.L. Smith, John Latham
  • Patent number: 10544214
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: January 28, 2020
    Assignee: ALDERBIO HOLDINGS LLC
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T. L. Smith, John Latham
  • Publication number: 20190389968
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for PCSK9. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-PCSK9 antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said anti-PCSK9 antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-PCSK9 antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with PCSK9.
    Type: Application
    Filed: March 6, 2019
    Publication date: December 26, 2019
    Inventors: Andrew Lawrence FELDHAUS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Ethan Wayne OJALA, Brian Robert KOVACEVICH, Katie Olson ANDERSON, Pei FAN, Jens BILLGREN, Erica Ann STEWART, Corinne C. AKATSUKA, Patricia Dianne MCNEILL, Danielle Marie MITCHELL, Dan Scott ALLISON, John A. LATHAM
  • Publication number: 20190119692
    Abstract: Methods for producing heterologous multi-subunit proteins in transformed cells are disclosed. In particular, the present disclosure provides improved methods of producing multi-subunit proteins, including antibodies and other multi-subunit proteins, which may or may not be secreted, with a higher yield and decreased production of undesired side-products. In exemplary embodiments, the transformed cells are a yeast, e.g., methylotrophic yeast such as Pichia pastoris.
    Type: Application
    Filed: October 29, 2018
    Publication date: April 25, 2019
    Inventors: Danielle Marie MITCHELL, Leon F. Garcia-Martinez, Patricia McNeill, Ethan Wayne Ojala, Mehmet Inan, John Latham
  • Patent number: 10259885
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for PCSK9. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-PCSK9 antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said anti-PCSK9 antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-PCSK9 antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with PCSK9.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: April 16, 2019
    Assignee: ALDERBIO HOLDINGS LLC
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Ethan Wayne Ojala, Brian Robert Kovacevich, Katie Olson Anderson, Pei Fan, Jens Billgren, Erica Ann Stewart, Corinne C. Akatsuka, Patricia Dianne McNeill, Danielle Marie Mitchell, Daniel Scott Allison, John A. Latham
  • Publication number: 20190085073
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Application
    Filed: August 13, 2018
    Publication date: March 21, 2019
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T.L. Smith, John Latham
  • Patent number: 10150968
    Abstract: Methods for producing heterologous multi-subunit proteins in transformed cells are disclosed. In particular, the present disclosure provides improved methods of producing multi-subunit proteins, including antibodies and other multi-subunit proteins, which may or may not be secreted, with a higher yield and decreased production of undesired side-products. In exemplary embodiments, the transformed cells are a yeast, e.g., methylotrophic yeast such as Pichia pastoris.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: December 11, 2018
    Assignee: ALDERBIO HOLDINGS LLC
    Inventors: Danielle Marie Mitchell, Leon F. Garcia-Martinez, Patricia Dianne McNeill, Ethan Wayne Ojala, Mehmet Inan, John Latham
  • Patent number: 10047157
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 14, 2018
    Assignee: ALDER BIOPHARMACEUTICALS, INC.
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T. L. Smith, John Latham
  • Publication number: 20160215049
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Application
    Filed: December 18, 2015
    Publication date: July 28, 2016
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T.L. Smith, John Latham
  • Publication number: 20160194408
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for PCSK9. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-PCSK9 antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said anti-PCSK9 antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-PCSK9 antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with PCSK9.
    Type: Application
    Filed: December 22, 2015
    Publication date: July 7, 2016
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Ethan Wayne Ojala, Brian Robert Kovacevich, Katie Olson Anderson, Pai Fan, Jens Billgren, Erica Ann Stewart, Corinne C. Akatsuka, Patricia Dianne McNeill, Danielle Marie Mitchell, Dan Scott Allison, John A. Latham
  • Patent number: 9255154
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for PCSK9. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-PCSK9 antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said anti-PCSK9 antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-PCSK9 antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with PCSK9.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 9, 2016
    Assignee: ALDERBIO HOLDINGS, LLC
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Ethan Wayne Ojala, Brian Robert Kovacevich, Katie Olson Anderson, Pei Fan, Jens Billgren, Erica Ann Stewart, Corinne C. Akatsuka, Patricia Dianne McNeill, Danielle Marie Mitchell, Dan Scott Allison, John A. Latham
  • Publication number: 20130302399
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for PCSK9. Another embodiment of this invention relates to the antibodies described herein, and binding fragments thereof, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-PCSK9 antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said anti-PCSK9 antibodies and binding fragments thereof. Embodiments of the invention also pertain to the use of anti-PCSK9 antibodies, and binding fragments thereof, for the diagnosis, assessment and treatment of diseases and disorders associated with PCSK9.
    Type: Application
    Filed: March 12, 2013
    Publication date: November 14, 2013
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Ethan Wayne Ojala, Brian Robert Kovacevich, Katie Olson, Pei Fan, Jens Billgren, Erica Ann Stewart, Corinne C. Akatsuka, Patricia Dianne McNeill, Danielle Marie Mitchell, Dan Scott Allison, John A. Latham
  • Publication number: 20130045888
    Abstract: Methods for producing heterologous multi-subunit proteins in transformed cells are disclosed. In particular, the present disclosure provides improved methods of producing multi-subunit proteins, including antibodies and other multi-subunit proteins, which may or may not be secreted, with a higher yield and decreased production of undesired side-products. In exemplary embodiments, the transformed cells are a yeast, e.g., methylotrophic yeast such as Pichia pastoris.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 21, 2013
    Inventors: Danielle Marie Mitchell, Leon F. Garcia-Martinez, Patricia Dianne McNeill, Ethan Wayne Ojala, Mehmet Inan, John Latham