Patents by Inventor Danilo Condello

Danilo Condello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240167934
    Abstract: The technology relates in part to flow cytometry systems and methods of use for the analysis of cells and biological particles.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 23, 2024
    Inventors: John P. NOLAN, Danilo CONDELLO
  • Patent number: 11977213
    Abstract: An imaging system may include a sample stage comprising a surface to support a sample container, the sample container including a sample having a plurality of sample locations; an optical stage to image the sample at the plurality of sample locations; one or more actuators physically coupled to at least one of the sample stage and the optical stage to move the sample stage relative to the optical stage to focus the optical stage onto a current sample location of the plurality of sample locations; a first light source to illuminate the current sample location; a second light source to project a pair of spots on a next sample location of the plurality of sample locations; and a controller to determine, based on an image of the pair of spots projected on the next sample location, a focus setting for the next sample location.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: May 7, 2024
    Assignee: ILLUMINA, INC.
    Inventors: Ashkan Arianpour, John Bailey, Dustin Blair, Xiangling (Steve) Chen, Stanley S. Hong, Simon Prince, Merek C. Siu, Chunhong (Allen) Zhou, Danilo Condello
  • Publication number: 20240033738
    Abstract: The presently described techniques relate generally to providing motion feedback (e.g., motion system calibration and/or sample alignment) in the context of an imaging system (such as a time delay and integration (TDI) based imaging system). The architecture and techniques discussed may achieve nanoscale control and calibration of a movement feedback system without a high-resolution encoder subsystem or, in the alternative embodiments, with a lower resolution (and correspondingly less expensive) encoder subsystem than might otherwise be employed. By way of example, certain embodiments described herein relate to ascertaining or calibrating linear motion of a sample holder surface using nanoscale features (e.g., sample sites or nanowells or lithographically patterned features) provided on a surface of the sample holder.
    Type: Application
    Filed: July 21, 2023
    Publication date: February 1, 2024
    Inventors: Michael Burek, Gregory Holst, Danilo Condello, Dustin Blair
  • Publication number: 20240027349
    Abstract: A method comprises: directing, using an objective and a first reflective surface, first autofocus light toward a sensor, the first autofocus light reflected from a first surface of a substrate; preventing second autofocus light from reaching the sensor, the second autofocus light reflected from a second surface of the substrate; and directing, using the objective and a second reflective surface, emission light toward the sensor, the emission light originating from a sample at the substrate.
    Type: Application
    Filed: October 4, 2023
    Publication date: January 25, 2024
    Inventors: Simon Prince, Danilo Condello, Vincent Hsieh, Krysada Phounsiri, John O’Shaughnessy
  • Patent number: 11815458
    Abstract: A method comprises: directing, using an objective and a first reflective surface, first autofocus light toward a sensor, the first autofocus light reflected from a first surface of a substrate; preventing second autofocus light from reaching the sensor, the second autofocus light reflected from a second surface of the substrate; and directing, using the objective and a second reflective surface, emission light toward the sensor, the emission light originating from a sample at the substrate.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: November 14, 2023
    Assignee: Illumina, Inc.
    Inventors: Simon Prince, Danilo Condello, Vincent Hsieh, Krysada Phounsiri, John O'Shaughnessy
  • Publication number: 20230228984
    Abstract: Some implementations of the disclosure relate to an imaging system, including: a sample holder to support a sample container having multiple sample locations; an optical stage having; an assembly comprising one or more actuators physically coupled to the sample holder to tilt the sample holder relative to the optical stage during imaging of the multiple sample locations to focus the optical stage onto a current sample location; a first light source to project a first pair of spots on the sample container; and a controller to control, based on a sample tilt determined from a first separation measurement of the first pair of spots from one or more images taken by an image sensor at one or more of the sample locations, the one or more actuators to tilt the sample holder along a first direction of the imaging or a second direction substantially perpendicular to the first direction.
    Type: Application
    Filed: January 17, 2023
    Publication date: July 20, 2023
    Inventors: Dakota Watson, Merek Siu, Dustin Blair, Danilo Condello, John Earney, Paul Sangiorgio
  • Publication number: 20230143682
    Abstract: Apparatus and methods for controlling heating of an objective in a linescanning sequencing system to improve resolution are disclosed. In accordance with a first implementation, an apparatus includes or comprises a beam source for providing input radiation and a beam shaping group including or comprising one or more optical elements positioned to receive the input radiation from the beam source, and to perform beam shaping on the input radiation to form a shaped beam. The apparatus further including or comprising an objective positioned to receive the shaped beam and to transform the shaped beam into a probe beam and configured to provide the probe beam to a focal plane of the objective for optically probing a sample. The beam shaping group is configured to adjust one or more properties of the shaped beam over time to generally uniformly heat the objective over a region of incidence for the shaped beam.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 11, 2023
    Inventors: Danilo Condello, Dakota Watson, Andrew Carson, Vincent Hsieh, Steven Boege, Changqin Ding, Stanley Hong
  • Publication number: 20220308354
    Abstract: Apparatus and methods for transmitting light are disclosed. In an implementation, an apparatus includes a collimator at an input end positioned to receive an input beam from a fiber beam source and to produce a collimated beam. The apparatus further includes a beam shaping group having one or more optical elements and positioned to receive the collimated beam from the collimator and format the collimated beam into a shaped propagation beam having a substantially rectangular cross-section in a far field. The apparatus further includes an objective stage for optically probing a sample, such as a flow cell, using substantially rectangular cross-section sampling beam, where fluorescence from the sample is captured by a line sensor for detecting properties of the sample, such as chemical reactions therein.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 29, 2022
    Inventors: Steven Boege, Simon Prince, Danilo Condello
  • Publication number: 20220276169
    Abstract: A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Yinghua Sun, Stanley S. Hong, Frederick Erie, Alex Nemiroski, M. Shane Bowen, Danilo Condello, Dietrich Dehlinger, Marco A. Krumbuegel, Anthony Lam, Aaron Liu, Bojan Obradovic, Mark Pratt
  • Patent number: 11360027
    Abstract: A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: June 14, 2022
    Assignee: Illumina, Inc.
    Inventors: Yinghua Sun, Stanley S. Hong, Frederick Erie, Alex Nemiroski, M. Shane Bowen, Danilo Condello, Dietrich Dehlinger, Marco A. Krumbuegel, Anthony Lam, Aaron Liu, Bojan Obradovic, Mark Pratt
  • Publication number: 20220049292
    Abstract: In a first aspect, a method includes: providing a sample, the sample including a first nucleotide and a second nucleotide; contacting the sample with a first fluorescent dye and a second fluorescent dye, the first fluorescent dye emitting first emitted light within a first wavelength band responsive to a first excitation illumination light, the second fluorescent dye emitting second emitted light within a second wavelength band responsive to a second excitation illumination light; simultaneously collecting, using one or more image detectors, multiplexed fluorescent light comprising the first emitted light and the second emitted light, the first emitted light being a first color channel corresponding to the first wavelength band and the second emitted light being a second color channel corresponding to the second wavelength band; and identifying the first nucleotide based on the first wavelength band of the first color channel and the second nucleotide based on the second wavelength band of the second color ch
    Type: Application
    Filed: March 2, 2020
    Publication date: February 17, 2022
    Inventors: Nikolai Romanov, Stanley S. Hong, Patrick McCauley, Xiaohai Liu, Danilo Condello, Merek Siu
  • Patent number: 11226475
    Abstract: The disclosure provides for structured illumination microscopy (SIM) imaging systems. In one set of implementations, a SIM imaging system may be implemented as a multi-arm SIM imaging system, whereby each arm of the system includes a light emitter and a beam splitter (e.g., a transmissive diffraction grating) having a specific, fixed orientation with respect to the system's optical axis. In a second set of implementations, a SIM imaging system may be implemented as a multiple beam splitter slide SIM imaging system, where one linear motion stage is mounted with multiple beam splitters having a corresponding, fixed orientation with respect to the system's optical axis. In a third set of implementations, a SIM imaging system may be implemented as a pattern angle spatial selection SIM imaging system, whereby a fixed two-dimensional diffraction grating is used in combination with a spatial filter wheel to project one-dimensional fringe patterns on a sample.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: January 18, 2022
    Assignees: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Peter Clarke Newman, Danilo Condello, Shaoping Lu, Simon Prince, Merek C. Siu, Stanley S. Hong, Aaron Liu, Gary Mark Skinner, Geraint Wyn Evans
  • Patent number: 11190706
    Abstract: Systems and methods disclosed herein include an imaging system that may include a laser diode source; an objective lens positioned to direct a focus tracking beam from the light source onto a location in a sample container and to receive the focus tracking beam reflected from the sample; and an image sensor that may include a plurality of pixel locations to receive focus tracking beam that is reflected off of the location in the sample container, where the reflected focus tracking beam may create a spot on the image sensor. Some examples may further include a laser diode light source that may be operated at a power level that is above a power level for operation at an Amplified Spontaneous Emission (“ASE”) mode, but below a power level for single mode operation.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: November 30, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Danilo Condello, Simon Prince, David Hargis, Jeffrey Bendick, Christophe Sigel
  • Patent number: 11143856
    Abstract: An imaging system including a light source; a first focusing lens positioned to focus a beam from the light source to a beam waist at a predetermined location along an optical path of the beam in the imaging system; a beam splitter positioned relative to the first focusing lens to receive the beam from the first focusing lens and to create first and second beams; a second focusing lens positioned to receive the first and second beams output by the beam splitter, to focus the received first and second beams to a spot sized dimensioned to fall within a sample to be image, and further positioned to receive first and second beams reflected from the sample; an image sensor positioned to receive the light beams reflected from the sample; and a roof prism positioned in the optical path between the second focusing lens and the image sensor.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: October 12, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Danilo Condello, Simon Prince, John O'Shaughnessy, Christophe Sigel, Ashkan Arianpour
  • Publication number: 20210294083
    Abstract: An imaging system may include a sample stage comprising a surface to support a sample container, the sample container including a sample having a plurality of sample locations; an optical stage to image the sample at the plurality of sample locations; one or more actuators physically coupled to at least one of the sample stage and the optical stage to move the sample stage relative to the optical stage to focus the optical stage onto a current sample location of the plurality of sample locations; a first light source to illuminate the current sample location; a second light source to project a pair of spots on a next sample location of the plurality of sample locations; and a controller to determine, based on an image of the pair of spots projected on the next sample location, a focus setting for the next sample location.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Ashkan Arianpour, John Bailey, Dustin Blair, Xiangling (Steve) Chen, Stanley S. Hong, Simon Prince, Merek C. Siu, Chunhong (Allen) Zhou, Danilo Condello
  • Patent number: 11125988
    Abstract: Systems and methods disclosed herein include an optical blocking structure that may include a frame defining an aperture, first and second elongate structural members each comprising first and second ends such that the first and second elongate structural members may be connected at their first ends to opposite sides of the aperture, and further such that the first and second elongate structural members may extend from the frame parallel to and in the same direction as one another; and an optically opaque blocking member positioned to extend between the respective second ends of the first and second blocking members.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 21, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Danilo Condello, Simon Prince, David Hargis, John O'Shaughnessy, William Butterfield, Jeffrey Bendick, Peter Clarke Newman
  • Patent number: 11054624
    Abstract: An imaging system may include a sample stage comprising a surface to support a sample container, the sample container having a plurality of sample locations; an optical stage having an objective lens, the optical stage being positionable relative to the sample stage to image samples at the sample locations; an actuator physically coupled to at least one of the sample stage and the optical stage to move the sample stage relative to the optical stage to focus the optical stage onto a current sample location; and a drive circuit to determine a focus setting for a next sample location and to provide a drive signal to the actuator before the optical stage is positioned to image a sample at the next sample location, wherein at least one parameter of the drive signal is determined using a difference between a focus setting for the current sample location and the determined focus setting for the next sample location.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 6, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Ashkan Arianpour, John Bailey, Dustin Blair, Xiangling (Steve) Chen, Stanley S. Hong, Simon Prince, Merek C. Siu, Chunhong (Allen) Zhou, Danilo Condello
  • Publication number: 20210199587
    Abstract: A method comprises: directing, using an objective and a first reflective surface, first autofocus light toward a sensor, the first autofocus light reflected from a first surface of a substrate; preventing second autofocus light from reaching the sensor, the second autofocus light reflected from a second surface of the substrate; and directing, using the objective and a second reflective surface, emission light toward the sensor, the emission light originating from a sample at the substrate.
    Type: Application
    Filed: December 22, 2020
    Publication date: July 1, 2021
    Inventors: Simon Prince, Danilo Condello, Vincent Hsieh, Krysada Phounsiri, John O'Shaughnessy
  • Patent number: 10996453
    Abstract: The disclosure provides for structured illumination microscopy (SIM) imaging systems. In one set of implementations, a SIM imaging system may be implemented as a multi-arm SIM imaging system, whereby each arm of the system includes a light emitter and a beam splitter (e.g., a transmissive diffraction grating) having a specific, fixed orientation with respect to the system's optical axis. In a second set of implementations, a SIM imaging system may be implemented as a multiple beam splitter slide SIM imaging system, where one linear motion stage is mounted with multiple beam splitters having a corresponding, fixed orientation with respect to the system's optical axis. In a third set of implementations, a SIM imaging system may be implemented as a pattern angle spatial selection SIM imaging system, whereby a fixed two-dimensional diffraction grating is used in combination with a spatial filter wheel to project one-dimensional fringe patterns on a sample.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: May 4, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Peter Clarke Newman, Danilo Condello, Shaoping Lu, Simon Prince, Merek C. Siu, Stanley S. Hong, Aaron Liu
  • Publication number: 20200259988
    Abstract: Systems and methods disclosed herein include an imaging system that may include a laser diode source; an objective lens positioned to direct a focus tracking beam from the light source onto a location in a sample container and to receive the focus tracking beam reflected from the sample; and an image sensor that may include a plurality of pixel locations to receive focus tracking beam that is reflected off of the location in the sample container, where the reflected focus tracking beam may create a spot on the image sensor. Some examples may further include a laser diode light source that may be operated at a power level that is above a power level for operation at an Amplified Spontaneous Emission (“ASE”) mode, but below a power level for single mode operation.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Danilo Condello, Simon Prince, David Hargis, Jeffrey Bendick, Christophe Sigel