Patents by Inventor Danna Qian

Danna Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11832533
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: November 28, 2023
    Assignee: Lam Research Corporation
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20220115592
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Patent number: 11239420
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 1, 2022
    Assignee: Lam Research Corporation
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20210146670
    Abstract: A laminate having an epoxy resin sheet (A) and a carrier sheet (B) on at least one surface of the epoxy resin sheet (A), wherein the epoxy resin sheet (A) has a tensile storage elastic modulus at 100° C. to 200° C. of 1.0×104 to 6.0×107 Pa and a tensile elongation of 150% or more, the tensile storage elastic modulus at 100° C. to 200° C. of the laminate is 6.0×107 to 1.0×1010 Pa, and the peel strength between the epoxy resin sheet (A) and the carrier sheet (B) is 5 N/15 mm or less.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 20, 2021
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Danna QIAN, Jun MATSUI
  • Patent number: 10978709
    Abstract: A lithium-excess cathode material according to Li1+xNiaMnbCocModO2?y (0<x<0.3, 0?a?1, 0?b?1, 0?c?1, 0?d?0.2, 0?y?0.25) in the form of secondary spherical microparticles formed from primary spherical nanoparticles. The primary nanoparticles can in the range of ˜130 nm to 170 nm and the secondary in the range of ˜2-3 ?m. A method of formation includes mixing a carbonates or hydroxides solution into a mixed solution of transition metal (M) ions with predetermined stoichiometry under stirring, and aging resulting transition metal carbonates or hydroxides at a predetermined temperature for period of time to produce primary nanoparticles of a predetermined size. A gas-solid interface reaction to uniformly creating oxygen vacancies without affecting structural integrity of Li-excess layered oxides is also provided.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: April 13, 2021
    Assignee: The Regents of the University of California
    Inventors: Ying Shirley Meng, Minghao Zhang, Haodong Liu, Danna Qian, Chengcheng Fang
  • Publication number: 20200066987
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20180331360
    Abstract: A lithium-excess cathode material according to Li1+xNiaMnbCocModO2?y (0<x<0.3, 0?a?1, 0?b?1, 0?c?1, 0?d?0.2, 0?y?0.25) in the form of secondary spherical microparticles formed from primary spherical nanoparticles. The primary nanoparticles can in the range of ˜130 nm to 170 nm and the secondary in the range of ˜2-3 ?m. A method of formation includes mixing a carbonates or hydroxides solution into a mixed solution of transition metal (M) ions with predetermined stoichiometry under stirring, and aging resulting transition metal carbonates or hydroxides at a predetermined temperature for period of time to produce primary nanoparticles of a predetermined size. A gas-solid interface reaction to uniformly creating oxygen vacancies without affecting structural integrity of Li-excess layered oxides is also provided.
    Type: Application
    Filed: November 15, 2016
    Publication date: November 15, 2018
    Applicant: The Regents of the University of California
    Inventors: Ying Shirley Meng, Minghao Zhang, Haodong Liu, Danna Qian, Chengcheng Fang