Patents by Inventor Danny Hiendriana

Danny Hiendriana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12000711
    Abstract: A method is described for verifying a digital map of a higher-level automated vehicle (HAV), in particular a highly automated vehicle, including the steps: S1 providing a digital map, preferably a highly accurate digital map: S2 determining an instantaneous reference position and localizing the reference position in the digital map; S3 establishing at least one actual feature property of a feature in the surroundings of the reference position, the establishment being carried out with the aid of at least one information source; S4 comparing the actual feature property to a setpoint feature property of the feature and ascertaining at least one difference value as the result of the comparison. A corresponding device and a computer program are also described.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 4, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Patent number: 11934197
    Abstract: A method for operating a higher-level automated vehicle (HAV), in particular a highly automated vehicle, is provided, including: S1 for providing a digital map, which may be a highly accurate digital map, in a driver assistance system of the HAV; S2 for determining an instantaneous vehicle position and localizing the vehicle position in the digital map; S3 for providing an expected setpoint traffic density at the vehicle position; S4 for ascertaining an instantaneous actual traffic density in the surroundings of the HAV; S5 for comparing the actual traffic density to the setpoint traffic density and ascertaining a difference value as the result of the comparison; S6 for checking the vehicle position of the HAV for plausibility at least partially based on the difference value and/or S7 for updating the digital map at least partially based on the difference value. Also described are a corresponding driver assistance system and a computer program.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: March 19, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Patent number: 11163041
    Abstract: A method and device for determining a first highly precise position of a vehicle. The method includes acquiring surrounding-area data values using at least one radar sensor of the vehicle, the surrounding-area data values representing a surrounding area of the vehicle; and determining a rough position of the vehicle as a function of the acquired surrounding area data values. In addition, the method includes determining surrounding-area feature data values as a function of the determined rough position of the vehicle, the surrounding-area feature data values representing at least one surrounding-area feature and a second highly precise position of the at least one surrounding-area feature; and determining the first highly precise position of the vehicle as a function of the at least one surrounding-area feature, according to predefined localization criteria, the first highly precise position of the vehicle being more precise than the rough position of the vehicle.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: November 2, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Carsten Hasberg, Christoph Schroeder, Danny Hiendriana, Oliver Pink, Philipp Rasp
  • Patent number: 11092445
    Abstract: A method and a corresponding system for localizing a vehicle using a digital map are described. In accordance with the method, the digital map assigns to the features one or a plurality of predetermined attributes, which are provided for characterizing possibly occurring actual changes in the features comparison to the digital map existing at the moment. On the basis of the assigned attributes, probabilities relative to the changes are also determined, and the vehicle is localized in consideration of the determined probabilities.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: August 17, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Carsten Hasberg, Christoph Schroeder, Danny Hiendriana, Oliver Pink, Philipp Rasp
  • Publication number: 20210139046
    Abstract: A method for locating a highly automated vehicle (HAV) in a digital location map, including: providing a digital map in a driver assistance system of the HAV; determining a current vehicle position, and locating the vehicle position in the digital map; identifying a route segment currently traveled by the HAV in the digital map; providing at least one traveled comparison trajectory of at least one additional vehicle along the currently traveled route segment; comparison of the at least one comparison trajectory with the currently traveled route segment as indicated in the digital map, and ascertaining a difference value as a result of the comparison; and ascertaining an up-to-dateness of the currently traveled route segment in the digital map, at least partly on the basis of the difference value.
    Type: Application
    Filed: June 4, 2018
    Publication date: May 13, 2021
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Publication number: 20210132622
    Abstract: A method and a device are described for operating an automated vehicle including determining a coarse position of the automated vehicle, determining first environment data values as a function of the coarse position, the first environment data values representing a target environment of the automated vehicle, recording second environment data values using an environment sensor system of the automated vehicle, the second environment data values representing an actual environment of the automated vehicle, determining a highly accurate position of the automated vehicle, as a function of a comparison between the actual environment and the target environment, and operating the automated vehicle, as a function of the highly accurate position.
    Type: Application
    Filed: March 21, 2018
    Publication date: May 6, 2021
    Inventors: Carsten Hasberg, Christoph Schroeder, Danny Hiendriana, Oliver Pink, Philipp Rasp
  • Patent number: 10809088
    Abstract: A method for predicting a construction-related driving-route change of a driving route for a vehicle includes at least a step of reading in and a step of detecting. In the step of reading in, at least one image signal is read in, which represents an image, recorded by the vehicle, of a construction-site parameter in the environment of the driving route. In the step of detecting, the impending driving-route change is detected using the image signal.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: October 20, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Publication number: 20200192400
    Abstract: A method for operating a higher-level automated vehicle (HAV), in particular a highly automated vehicle, is provided, including: S1 for providing a digital map, which may be a highly accurate digital map, in a driver assistance system of the HAV; S2 for determining an instantaneous vehicle position and localizing the vehicle position in the digital map; S3 for providing an expected setpoint traffic density at the vehicle position; S4 for ascertaining an instantaneous actual traffic density in the surroundings of the HAV; S5 for comparing the actual traffic density to the setpoint traffic density and ascertaining a difference value as the result of the comparison; S6 for checking the vehicle position of the HAV for plausibility at least partially based on the difference value and/or S7 for updating the digital map at least partially based on the difference value. Also described are a corresponding driver assistance system and a computer program.
    Type: Application
    Filed: June 4, 2018
    Publication date: June 18, 2020
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Publication number: 20200182629
    Abstract: A method is described for verifying a digital map of a higher-level automated vehicle (HAV), in particular a highly automated vehicle, including the steps: S1 providing a digital map, preferably a highly accurate digital map: S2 determining an instantaneous reference position and localizing the reference position in the digital map; S3 establishing at least one actual feature property of a feature in the surroundings of the reference position, the establishment being carried out with the aid of at least one information source; S4 comparing the actual feature property to a setpoint feature property of the feature and ascertaining at least one difference value as the result of the comparison. A corresponding device and a computer program are also described.
    Type: Application
    Filed: June 4, 2018
    Publication date: June 11, 2020
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Publication number: 20200056893
    Abstract: A method and a corresponding system for localizing a vehicle using a digital map are described. In accordance with the method, the digital map assigns to the features one or a plurality of predetermined attributes, which are provided for characterizing possibly occurring actual changes in the features in comparison to the digital map existing at the moment. On the basis of the assigned attributes, probabilities relative to the changes are also determined, and the vehicle is localized in consideration of the determined probabilities.
    Type: Application
    Filed: August 28, 2017
    Publication date: February 20, 2020
    Applicant: Robert Bosch GmbH
    Inventors: Carsten HASBERG, Christoph SCHROEDER, Danny HIENDRIANA, Oliver PINK, Philipp RASP
  • Publication number: 20190331499
    Abstract: A method, a processing unit which carries out the method, and a system including the processing unit for updating a digital map for locating motor vehicles are provided. In the case of the method for updating a digital map for locating motor vehicles, surroundings information is detected by a vehicle for the purpose of updating the digital map and the detected surroundings information is compared to the surroundings information which is stored on the digital map. In this case, the vehicle is located on the digital map, which means that the location or position of the vehicle on the digital map is known. For the purpose of detecting the surroundings information, the vehicle is navigated along a first route, whose most recently carried out comparison of surroundings information dates back the longest as compared to at least one further optional route.
    Type: Application
    Filed: December 5, 2017
    Publication date: October 31, 2019
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Publication number: 20190285419
    Abstract: A method and device for determining a first highly precise position of a vehicle. The method includes acquiring surrounding-area data values using at least one radar sensor of the vehicle, the surrounding-area data values representing a surrounding area of the vehicle; and determining a rough position of the vehicle as a function of the acquired surrounding area data values. In addition, the method includes determining surrounding-area feature data values as a function of the determined rough position of the vehicle, the surrounding-area feature data values representing at least one surrounding-area feature and a second highly precise position of the at least one surrounding-area feature; and determining the first highly precise position of the vehicle as a function of the at least one surrounding-area feature, according to predefined localization criteria, the first highly precise position of the vehicle being more precise than the rough position of the vehicle.
    Type: Application
    Filed: October 23, 2017
    Publication date: September 19, 2019
    Applicant: Robert Bosch GmbH
    Inventors: Carsten Hasberg, Christoph Schroeder, Danny Hiendriana, Oliver Pink, Philipp Rasp
  • Publication number: 20190072404
    Abstract: A method for predicting a construction-related driving-route change of a driving route for a vehicle includes at least a step of reading in and a step of detecting. In the step of reading in, at least one image signal is read in, which represents an image, recorded by the vehicle, of a construction-site parameter in the environment of the driving route. In the step of detecting, the impending driving-route change is detected using the image signal.
    Type: Application
    Filed: August 31, 2018
    Publication date: March 7, 2019
    Inventors: Ali Alawieh, Carsten Hasberg, Danny Hiendriana, Fabian Dominik Reister, Jan-Hendrik Pauls, Muhammad Sheraz Khan, Philipp Rasp, Valentin Frommherz
  • Publication number: 20180188036
    Abstract: A method for validating a digital map for a vehicle, including radar-based ascertainment of driving-environment data with the aid of an ascertainment device of the vehicle, comparing the ascertained driving-environment data to corresponding data of the digital map, and Verifying a validity of the digital map for the case when the driving-environment data, ascertained based on radar, coincide to a defined extent with the data of the digital map.
    Type: Application
    Filed: December 15, 2017
    Publication date: July 5, 2018
    Inventors: Carsten Hasberg, Christoph Schroeder, Danny Hiendriana, Oliver Pink, Philipp Rasp
  • Publication number: 20180154901
    Abstract: A method and an associated system for vehicle localization are described. The system includes a first sensor unit for determining a relative movement of the vehicle in relation to at least one feature in the vehicle surroundings and a second sensor unit for detecting radar data of the vehicle surroundings. The system also includes a memory for storing a digital map, a localization unit, which is configured, for ascertaining a preliminary position indication, to localize the vehicle in the digital map based on the relative movement determined by the first sensor unit, and a position determination unit, which is configured to compare the radar data detected by the second sensor unit with the digital map while taking the preliminary position indication into account, and to determine a position of the vehicle based on the comparison.
    Type: Application
    Filed: November 15, 2017
    Publication date: June 7, 2018
    Inventors: Carsten Hasberg, Christoph Schroeder, Danny Hiendriana, Oliver Pink, Philipp Rasp