Patents by Inventor Danny M. Sheldon

Danny M. Sheldon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150052980
    Abstract: Internally shielded fuel passage orifices in nozzle rocket swirler airfoils are sealed with the pressure test tool. Pinch clamps on the test tool are introduced into the fuel nozzle rocket swirler. The clamps are tightened over the airfoil orifices to plug or otherwise seal them and their fuel passages within the nozzle assembly. The nozzle assembly fuel passages are subsequently pressurized. Pressure is monitored to determine whether the nozzle is properly sealed (i.e., no pressure decay) or whether it has a leak-causing structural defect. Pressure drop in the tested component during the test cycle is indicative of a leak, in the nozzle's fuel passages, caused for example by a structural defect in the component. The test system may also be utilized in conjunction with individual rocket swirlers that are not incorporated within a complete fuel nozzle assembly.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Inventors: Danny M. Sheldon, Kristine A. Kushner, Trent Lewis, Dane J. Hurt
  • Patent number: 8749629
    Abstract: Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: June 10, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Erwan Baleine, Danny M. Sheldon
  • Publication number: 20120200698
    Abstract: Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Inventors: Erwan Baleine, Danny M. Sheldon