Patents by Inventor Danping Chen

Danping Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240066556
    Abstract: A device for separating and recovering flat-plate catalyst powder and a method for determining a wear ratio are provided. The device includes a powder separation unit and a powder recovery unit, a powder accumulation bin is respectively connected with a shell and a catalyst powder outlet, a cyclone outlet is configured on an inner side of a recovery shell, and a primary filter and a secondary filter are configured on an inner side wall of the recovery shell.
    Type: Application
    Filed: June 29, 2023
    Publication date: February 29, 2024
    Inventors: Yingjie Bao, Jieyong Hao, Changkai Yu, Xun Wu, Xianchun Zhou, Yanxuan Liang, Rongfu Tang, Feiyun Chen, Bin Luo, Kaiyou Liao, Danping Zhang, Chao Li, Fanhai Kong, Lele Wang, Qiang Bao, Chuan He
  • Patent number: 11917859
    Abstract: Provided is a display module. The display module includes: a display panel and a heat dissipation structure; wherein the display panel includes a substrate and a display substrate layer disposed on the substrate, and the heat dissipation structure is disposed on a side, distal from the display substrate layer, of the substrate; and a gap is formed between at least a partial region of the heat dissipation structure and the substrate.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: February 27, 2024
    Assignees: Chengdu BOE Optoe ctroni Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Zuquan Chen, Wei Qing, Zhihui Wang, Xingguo Liu, Shaokui Liu, Wei Zeng, Danping Shen, Ce Wang, Qiang Tang
  • Patent number: 11780768
    Abstract: A photodarkening-resistant ytterbium-doped quartz optical fiber and a method for prpearing such a fiber are provided. Glass of a photodarkening-resistant ytterbium-doped quartz optical fiber core rod includes at least Yb2O3, Al2O3, P2O5, SiO2. The proportions of Yb2O3, Al2O3, and P2O5 in the entire substance are Yb2O3: 0.05-0.3 mol %, Al2O3: 1-3 mol %, and P2O5: 1-5 mol %, respectively. In the preparation method for the photodarkening-resistant ytterbium-doped quartz optical fiber, a sol-gel method and an improved chemical vapor deposition method are combined. By using the molecular-level doping uniformity and the low preparation loss thereof respectively, ytterbium ions, aluminum ions and phosphorus ions are effectively doped in a quartz matrix, thereby effectively solving the problems in the optical fiber of high loss, photodarkening caused by cluster or the like, and a central refractive index dip.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 10, 2023
    Assignee: SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Lili Hu, Fengguang Lou, Chunlei Yu, Meng Wang, Lei Zhang, Xiaoqing Xu, Danping Chen, Fan Wang, Mengting Guo
  • Publication number: 20210230051
    Abstract: A photodarkening-resistant ytterbium-doped quartz optical fiber and a method for preparing such a fiber are provided. Glass of a photodarkening-resistant ytterbium-doped quartz optical fiber core rod includes at least Yb2O3, Al2O3, P2O5, SiO2. The proportions of Yb2O3, Al2O3, and P2O5 in the entire substance are Yb2O3: 0.05-0.3 mol %, Al2O3: 1-3 mol %, and P2O5: 1-5 mol %, respectively. In the preparation method for the photodarkening-resistant ytterbium-doped quartz optical fiber, a sol-gel method and an improved chemical vapor deposition method are combined. By using the molecular-level doping uniformity and the low preparation loss thereof respectively, ytterbium ions, aluminum ions and phosphorus ions are effectively doped in a quartz matrix, thereby effectively solving the problems in the optical fiber of high loss, photodarkening caused by cluster or the like, and a central refractive index dip.
    Type: Application
    Filed: June 6, 2019
    Publication date: July 29, 2021
    Inventors: Fengguang LOU, Lili HU, Chunlei YU, Meng WANG, Lei ZHANG, Xiaoqing XU, Danping CHEN
  • Patent number: 9260340
    Abstract: A luminous nano-glass-ceramics used as white LED source and the preparing method of nano-glass-ceramics are provided. The glass is a kind of non-porous compact SiO2 glass in which luminous nano-microcrystalites are dispersed. The luminous nano-microcrystalite has the chemical formula of YxGd3-xAl5O12:Ce, wherein 0?x?3. The stability of the said glass is good and its irradiance is uniform. The preparing method comprises the following steps: dissolving the compound raw materials in the solvent to form mixed solution, dipping the nano-microporous SiO2 glass in the solution, taking it out and air drying, sintering at the temperature of 1100-1300° C. for 1-5 hours by stage heating, and obtaining the product. The method has a simple process, convenient operation and low cost.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 16, 2016
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Yanbo Qiao, Wenbo Ma, Danping Chen
  • Publication number: 20120319045
    Abstract: A luminous nano-glass-ceramics used as white LED source and the preparing method of nano-glass-ceramics are provided. The glass is a kind of non-porous compact SiO2 glass in which luminous nano-microcrystalites are dispersed. The luminous nano-microcrystalite has the chemical formula of YxGd3-xAl5O12:Ce, wherein 0?x?3. The stability of the said glass is good and its irradiance is uniform. The preparing method comprises the following steps: dissolving the compound raw materials in the solvent to form mixed solution, dipping the nano-microporous SiO2 glass in the solution, taking it out and air drying, sintering at the temperature of 1100-1300° C. for 1-5 hours by stage heating, and obtaining the product. The method has a simple process, convenient operation and low cost.
    Type: Application
    Filed: March 5, 2010
    Publication date: December 20, 2012
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO, LTD
    Inventors: Mingjie Zhou, Yanbo Qiao, Wenbo Ma, Danping Chen
  • Patent number: 7975508
    Abstract: The present invention provides: a method for producing high silicate glass which has a low Fe concentration and can achieve a high UV transmittance while retaining advantages of Vycor glass that mass-production at low cost is feasible and that complex formation with various photofunctional ions can be effected; and high silicate glass of a high UV transmittance. For obtaining the above high silicate glass, the method is characterized by comprising the steps of: heating borosilicate glass including a heavy metal or rare-earth element (preferably a high-valence heavy metal or rare-earth element) so as to phase-separate the borosilicate glass; subjecting the phase-separated borosilicate glass to acid treatment so as to elute a metal; and sintering the acid-treated borosilicate glass.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: July 12, 2011
    Assignee: Japan Science and Technology Agency
    Inventors: Tomoko Akai, Danping Chen
  • Patent number: 7938551
    Abstract: The present invention provides a process for producing a luminescent glass, comprising the steps of adsorbing, to a porous high silica glass, at least one metal component selected from the group consisting of elements of Groups IIIA, IVA, VA, VIA, VIIA, VIII, IB, IIB and IVB of the Periodic Table; and thereafter heating the porous glass in a reducing atmosphere. The luminescent glass obtained by the process is excellent in heat resistance, chemical durability, mechanical strength and other properties, and exhibits strong luminescence when irradiated with UV light or the like. The glass can be effectively used as a luminous body for lighting systems, display devices, etc.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 10, 2011
    Assignees: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology
    Inventors: Danping Chen, Tomoko Akai
  • Publication number: 20100238646
    Abstract: The present invention provides a process for producing a luminescent glass, comprising the steps of adsorbing, to a porous high silica glass, at least one metal component selected from the group consisting of elements of Groups IIIA, IVA, VA, VIA, VIIA, VIII, IB, IIB and IVB of the Periodic Table; and thereafter heating the porous glass in a reducing atmosphere. The luminescent glass obtained by the process is excellent in heat resistance, chemical durability, mechanical strength and other properties, and exhibits strong luminescence when irradiated with UV light or the like. The glass can be effectively used as a luminous body for lighting systems, display devices, etc.
    Type: Application
    Filed: June 3, 2010
    Publication date: September 23, 2010
    Applicants: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology
    Inventors: Danping CHEN, Tomoko Akai
  • Patent number: 7758774
    Abstract: The present invention provides a process for producing a luminescent glass, comprising the steps of adsorbing, to a porous high silica glass, at least one metal component selected from the group consisting of elements of Groups IIIA, IVA, VA, VIA, VIIA, VIII, IB, IIB and IVB of the Periodic Table; and thereafter heating the porous glass in a reducing atmosphere. The luminescent glass obtained by the process is excellent in heat resistance, chemical durability, mechanical strength and other properties, and exhibits strong luminescence when irradiated with UV light or the like. The glass can be effectively used as a luminous body for lighting systems, display devices, etc.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: July 20, 2010
    Assignees: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology
    Inventors: Danping Chen, Tomoko Akai
  • Publication number: 20060201200
    Abstract: The present invention provides: a method for producing high silicate glass which has a low Fe concentration and can achieve a high UV transmittance while retaining advantages of Vycor glass that mass-production at low cost is feasible and that complex formation with various photofunctional ions can be effected; and high silicate glass of a high UV transmittance. For obtaining the above high silicate glass, the method is characterized by comprising the steps of: heating borosilicate glass including a heavy metal or rare-earth element (preferably a high-valence heavy metal or rare-earth element) so as to phase-separate the borosilicate glass; subjecting the phase-separated borosilicate glass to acid treatment so as to elute a metal; and sintering the acid-treated borosilicate glass.
    Type: Application
    Filed: March 19, 2004
    Publication date: September 14, 2006
    Inventors: Tomoko Akai, Danping Chen
  • Publication number: 20060065017
    Abstract: The present invention provides a method of treating waste glass comprising bringing waste glass into contact with hot steam or hot water under pressure. Using this method, a porous material with a high silicon oxide content that can be reused as a resource for general purposes can be obtained, without the addition of auxiliary raw materials, through a procedure which can be carried out at low cost.
    Type: Application
    Filed: February 12, 2004
    Publication date: March 30, 2006
    Applicant: Japan Science and Technology Agency
    Inventors: Hiroshi Miyoshi, Tomoko Akai, Danping Chen
  • Publication number: 20060037366
    Abstract: The present invention provides a process for producing a luminescent glass, comprising the steps of adsorbing, to a porous high silica glass, at least one metal component selected from the group consisting of elements of Groups IIIA, IVA, VA, VIA, VIIA, VIII, IB, IIB and IVB of the Periodic Table; and thereafter heating the porous glass in a reducing atmosphere. The luminescent glass obtained by the process is excellent in heat resistance, chemical durability, mechanical strength and other properties, and exhibits strong luminescence when irradiated with UV light or the like. The glass can be effectively used as a luminous body for lighting systems, display devices, etc.
    Type: Application
    Filed: November 28, 2003
    Publication date: February 23, 2006
    Inventors: Danping Chen, Tomoko Akai
  • Publication number: 20050028556
    Abstract: Waste glass is pulverized into pulverized waste glass, and the pulverized waste glass is brought into contact with acid solution so that components such as sodium other than silicon oxide in the fine particle waste glass are dissolved in the acid solution and removed. With this, it is possible to remove components other than silicon dioxide from waste glass. Therefore it is possible to recycle waste glass so as to reuse the waste glass as a useful regenerated product that can be used for various purposes.
    Type: Application
    Filed: September 11, 2002
    Publication date: February 10, 2005
    Inventors: Tomoko Akai, Danping Chen, Hirotsugu Masui, Koji Kuraoka, Tetsuo Yazawa