Patents by Inventor Dapeng Yu

Dapeng Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240183064
    Abstract: A method for preparing a large-scale two-dimensional single crystal material stack which has an interlayer rotation angle. Single crystal substrates are stacked and rotated at a specific angle, a two-dimensional single crystal material is epitaxial on the surface thereof, and then an upper layer and a lower layer of the two-dimensional single crystal material are attached, and a layer of the single crystal substrates on the surface is removed so as to obtain a two-dimensional single crystal stack which has a specific rotation angle. A large-scale two-dimensional single crystal material stack which has an interlayer rotation angle prepared by the described method.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 6, 2024
    Applicant: PEKING UNIVERSITY
    Inventors: Kaihui LIU, Can LIU, Enge WANG, Dapeng YU
  • Patent number: 11840483
    Abstract: Disclosed is a method for preparing high-strength coral aggregate concrete under low pressure conditions, including the following steps: weighing cement, mineral admixture, coral aggregate, mixing water, water reducer, and defoamer; mixing the cement and the mineral admixture well to obtain a cementing material; putting the coral aggregate, sea water, water reducer, defoamer, and 55-85% of the cementing material into a closed mixing system to stir for 10-15 min under low pressure conditions, and pouring the remaining cementing material into the mixing system to stir for additional 10-15 min to prepare the high-strength coral aggregate concrete. The high-strength coral aggregate concrete obtained has advantages of high mechanical properties, high compactness, excellent impermeability and durability, drawing on local resources in construction engineering on remote islands and reefs, and maximum resource utilization.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: December 12, 2023
    Assignee: GUILIN UNIVERSITY OF TECHNOLOGY
    Inventors: Lei Wang, Dapeng Yu, Jin Yi, Ping Chen
  • Publication number: 20230080832
    Abstract: Provided is a preparation method for an ultrahigh-conductivity multilayer single-crystal laminated copper material, where multiple layers of single-crystal copper foils are laminated together to form a laminate, and the laminate is pressurized and annealed as one piece by performing pressurizing and high-temperature annealing at the same time, or the laminate is pressed as one piece by means of direct hot rolling, thereby obtaining an ultrahigh-conductivity multi-layer single-crystal laminated copper material, whereby, according to the method, multiple layers of single-crystal copper foils are used as raw materials, an ultrahigh-conductivity multi-layer single-crystal laminated copper material is prepared by means of hot rolling or pressing and annealing, and the conductivity of the copper material is greater than or equal to 105% IACS.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 16, 2023
    Inventors: Kaihui LIU, Muhong WU, Dapeng YU, Enge WANG
  • Publication number: 20220144700
    Abstract: A method of preparing high strength coral concrete, wherein the high strength coral concrete is prepared from raw materials of the following parts by mass: 25˜63 parts of cementing materials, 45˜58 parts of coral aggregate, 10˜16 parts of mixing water and water reducer 2˜5% the weight of the cementing materials; the weighed coral aggregate, mixing water, water reducer and 55˜85% of the cementing materials are stirred in an agitator for 10˜15 minutes; the rest of cementing materials are added in batches before initial setting and stirred; then poured and removed from the mould after 24 hours, cured in mixing water at normal temperature for 28 days, to get the high strength coral concrete.
    Type: Application
    Filed: July 6, 2020
    Publication date: May 12, 2022
    Inventors: Lei Wang, Jin Yi, Dapeng Yu, Rongjin Liu
  • Publication number: 20220136134
    Abstract: A method for clonal-growth of a single-crystal metal, including: using copper as an example, placing an existing small-sized single-crystal copper foil with a plane of any index on a copper foil that needs to be single-crystallized, and performing annealing to obtain, by cloning, a large-area (in meters) single-crystal copper foil with the same surface index as that of the parent facet. The method solves the difficult problem of large-area single-crystal copper foil preparation. By performing annealing, a parent single-crystal copper foil with a very small size (˜0.25 cm2) can be cloned to produce a large-area (˜700 cm2) single-crystal copper foil, which is an increase in area of about 3000 times.
    Type: Application
    Filed: June 4, 2019
    Publication date: May 5, 2022
    Inventors: Kaihui Liu, Zhibin Zhang, Muhong Wu, Dapeng Yu, Enge Wang
  • Publication number: 20210163359
    Abstract: Disclosed is a method for preparing high-strength coral aggregate concrete under low pressure conditions, including the following steps: weighing cement, mineral admixture, coral aggregate, mixing water, water reducer, and defoamer; mixing the cement and the mineral admixture well to obtain a cementing material; putting the coral aggregate, sea water, water reducer, defoamer, and 55-85% of the cementing material into a closed mixing system to stir for 10-15 min under low pressure conditions, and pouring the remaining cementing material into the mixing system to stir for additional 10-15 min to prepare the high-strength coral aggregate concrete. The high-strength coral aggregate concrete obtained has advantages of high mechanical properties, high compactness, excellent impermeability and durability, drawing on local resources in construction engineering on remote islands and reefs, and maximum resource utilization.
    Type: Application
    Filed: June 24, 2020
    Publication date: June 3, 2021
    Applicant: GUILIN UNIVERSITY OF TECHNOLOGY
    Inventors: Lei WANG, Dapeng YU, Jin YI, Ping CHEN
  • Publication number: 20200250567
    Abstract: Provided are a method for coupling any two qubits from among multiple superconducting qubits and a system thereof, which are applied to an occasion provided with a multi-superconducting-qubit array and a magnetic film material capable of implementing spin waves. The method includes: disposing a magnetic film material below a multi-superconducting-qubit array; forming, through a combination of magnetization directions of magnetic domains in the magnetic film material, multiple channels through which the spin waves pass; disposing multiple qubits of the multi-superconducting-qubit array above the multiple channels through which the spin waves pass correspondingly to implement a coupling between each qubit and the spin waves; and disposing at least two qubits above one spin wave channel and implementing a coupling between the at least two qubits through the coupling between each qubit and the spin waves.
    Type: Application
    Filed: March 5, 2019
    Publication date: August 6, 2020
    Inventors: Dapeng Yu, Jiansheng Wu, Jiang Xiao, Song Liu, Shaojie Yuan
  • Publication number: 20150060276
    Abstract: There is provided a nanopore system including a nanopore in a solid state membrane. A first reservoir is in fluidic connection with the nanopore, the first reservoir being configured to provide, to the nanopore, nucleic acid molecules in an electrolytic solution. A second reservoir is in fluidic connection with the nanopore, with the nanopore membrane separating the first and second reservoirs. A pressure source is connected to the first reservoir to apply an external pressure to the first reservoir to cause nanopore translocation of nucleic acid molecules in the solution in the first reservoir. A voltage source is connected between the second and first reservoirs, across the nanopore, with a voltage bias polarity that applies an electric field counter to the externally applied pressure. Force of the externally applied pressure is greater than force of the electric field during nanopore translocation by the nucleic acid molecules.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 5, 2015
    Applicants: PEKING UNIVERSITY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Jene A. Golovchenko, Bo Lu, David P. Hoogerheide, Dapeng Yu, Qing Zhao
  • Publication number: 20150060277
    Abstract: There is provided a nanopore system including a nanopore in a support structure. A first reservoir is in fluidic connection with the nanopore and a second reservoir is in fluidic connection with the nanopore. The support structure separates the first and second reservoirs. A pressure source is connected to one of the first and second reservoirs to apply an external pressure to one of the first and second reservoirs. A voltage source is connected between the first and second reservoirs to apply a voltage bias between the first and second reservoirs, across the nanopore. This system enables a method for analysis of species in solution, wherein there is provided to the nanopore a fluidic solution that includes a species for translocation through the nanopore, with an external pressure applied to the species in fluidic solution and a voltage bias applied across the nanopore.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 5, 2015
    Applicants: PEKING UNIVERSITY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Jene A. Golovchenko, Bo Lu, David P. Hoogerheide, Dapeng Yu, Qing Zhao