Patents by Inventor Darin K. Winterton

Darin K. Winterton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240015400
    Abstract: A method includes dividing a field of view into a plurality of zones and sampling the field of view to generate a photon count for each zone of the plurality of zones, identifying a focal sector of the field of view and analyzing each zone to select a final focal object from a first prospective focal object and a second prospective focal object.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: Darin K. Winterton, Donald Baxter, Andrew Hodgson, Gordon Lunn, Olivier Pothier, Kalyan-Kumar Vadlamudi-Reddy
  • Publication number: 20230400904
    Abstract: A method for operating an electronic device includes while a display is in low power mode, detecting based on data collected by a time of flight (ToF) sensor, a movable object within a field of view of the electronic device; in response to the detecting initiating a period of detection having a plurality of frames, the period of detection being a time period over which a distance value indicative of a distance between the movable object and the display is detected; for each of the plurality of frames, changing the distance value to reflect whether the movable object is moving near or further from the electronic device; detecting that the distance value after the period of detection is less than a threshold distance value indicative of the movable object approaching the display; if the distance value is less than the threshold distance value, waking up the display.
    Type: Application
    Filed: June 14, 2022
    Publication date: December 14, 2023
    Inventors: Arnaud Deleule, Kalyan-Kumar Vadlamudi-Reddy, Darin K Winterton, Jihong Chen, Olivier Lemarchand
  • Patent number: 11800224
    Abstract: A method includes dividing a field of view into a plurality of zones and sampling the field of view to generate a photon count for each zone of the plurality of zones, identifying a focal sector of the field of view and analyzing each zone to select a final focal object from a first prospective focal object and a second prospective focal object.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: October 24, 2023
    Assignees: STMicroelectronics SA, STMicroelectronics, Inc., STMicroelectronics (Research & Development) Limited
    Inventors: Darin K. Winterton, Donald Baxter, Andrew Hodgson, Gordon Lunn, Olivier Pothier, Kalyan-Kumar Vadlamudi-Reddy
  • Publication number: 20230079355
    Abstract: A method includes dividing a field of view into a plurality of zones and sampling the field of view to generate a photon count for each zone of the plurality of zones, identifying a focal sector of the field of view and analyzing each zone to select a final focal object from a first prospective focal object and a second prospective focal object.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 16, 2023
    Inventors: Darin K. Winterton, Donald Baxter, Andrew Hodgson, Gordon Lunn, Olivier Pothier, Kalyan-Kumar Vadlamudi-Reddy
  • Patent number: 11528407
    Abstract: A method includes dividing a field of view into a plurality of zones and sampling the field of view to generate a photon count for each zone of the plurality of zones, identifying a focal sector of the field of view and analyzing each zone to select a final focal object from a first prospective focal object and a second prospective focal object.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: December 13, 2022
    Assignees: STMICROELECTRONICS SA, STMICROELECTRONICS, INC., STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: Darin K. Winterton, Donald Baxter, Andrew Hodgson, Gordon Lunn, Olivier Pothier, Kalyan-Kumar Vadlamudi-Reddy
  • Publication number: 20220191402
    Abstract: A method includes dividing a field of view into a plurality of zones and sampling the field of view to generate a photon count for each zone of the plurality of zones, identifying a focal sector of the field of view and analyzing each zone to select a final focal object from a first prospective focal object and a second prospective focal object.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 16, 2022
    Inventors: Darin K. Winterton, Donald Baxter, Andrew Hodgson, Gordon Lunn, Olivier Pothier, Kalyan-Kumar Vadlamudi-Reddy
  • Publication number: 20210298637
    Abstract: In accordance with embodiments, methods and systems for utilizing multiple threshold checkers are provided. A range sensor collects measurement data. The range sensor examines the measurement data based on multiple threshold checkers to determine satisfaction of a trigger condition. In response to the satisfaction of the trigger condition, the range sensor provides the measurement data to a host computing device of the range sensor.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Inventors: Kalyan-Kumar Vadlamudi-Reddy, Darin K. Winterton, Pierre-Loic Felter, Olivier Lemarchand
  • Publication number: 20210302563
    Abstract: In accordance with embodiments, methods and systems for utilizing multiple threshold checkers are provided. A range sensor collects measurement data. The range sensor examines the measurement data based on multiple threshold checkers to determine satisfaction of a trigger condition. In response to the satisfaction of the trigger condition, the range sensor provides the measurement data to a host computing device of the range sensor.
    Type: Application
    Filed: October 27, 2020
    Publication date: September 30, 2021
    Inventors: Olivier Lemarchand, Pierre-Loic Felter, Darin K. Winterton, Kalyan-Kumar Vadlamudi-Reddy
  • Patent number: 10594920
    Abstract: A device includes a time-of-flight ranging sensor configured to transmit optical pulse signals and to receive return optical pulse signals. The time-of-flight ranging sensor processes the return optical pulse signals to sense distances to a plurality of objects and to generate a confidence value indicating whether one of the plurality of objects has a highly reflective surface. The time-of-flight sensor generates a range estimation signal including a plurality of sensed distances and the confidence value. The image capture device includes autofocusing circuitry coupled to the time-of-flight sensor to receive the range estimation signal and configured to control focusing based upon the sensed distances responsive to the confidence value indicating none of the plurality of objects has a highly reflective surface. The autofocusing circuitry controls focusing independent of the sensed distances responsive to the confidence value indicating one of the objects has a highly reflective surface.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: March 17, 2020
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Xiaoyong Yang, Darin K. Winterton, Arnaud Deleule
  • Patent number: 10067223
    Abstract: An electronic device includes a ranging light source and a reflected light detector. A logic circuit causes the ranging light source to emit ranging light at a target. Reflected light from the target is detected using the reflected light detector, with the reflected light being a portion of the ranging light that reflects from the target back toward the reflected light detector. An intensity of the reflected light is determined using the reflected light detector. A distance to the target is determined based upon time elapsed between activating the ranging light source and detecting the reflected ranging light. Reflectance of the target is calculated, based upon the intensity of the reflected light and the distance to the target.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: September 4, 2018
    Assignees: STMicroelectronics (Research & Development) Limited, STMicroelectronics, Inc.
    Inventors: Darin K. Winterton, Sam Lee
  • Publication number: 20170366737
    Abstract: A device includes a time-of-flight ranging sensor configured to transmit optical pulse signals and to receive return optical pulse signals. The time-of-flight ranging sensor processes the return optical pulse signals to sense distances to a plurality of objects and to generate a confidence value indicating whether one of the plurality of objects has a highly reflective surface. The time-of-flight sensor generates a range estimation signal including a plurality of sensed distances and the confidence value. The image capture device includes autofocusing circuitry coupled to the time-of-flight sensor to receive the range estimation signal and configured to control focusing based upon the sensed distances responsive to the confidence value indicating none of the plurality of objects has a highly reflective surface. The autofocusing circuitry controls focusing independent of the sensed distances responsive to the confidence value indicating one of the objects has a highly reflective surface.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 21, 2017
    Inventors: Xiaoyong Yang, Darin K. Winterton, Arnaud Deleule
  • Publication number: 20170351336
    Abstract: A device includes a time-of-flight sensor configured to transmit an optical pulse signal and to receive a return optical pulse signal corresponding to a portion of the transmitted optical pulse signal that has reflected off an object within a field of view of the time-of-flight sensor. The time-of-flight sensor generates a range estimation signal including a distance to the object and a signal amplitude indicating an amplitude of the return optical pulse signal. A controller is coupled to the time of flight sensor and is configured to process the range estimation signal over time to detect an input gesture based upon the signal amplitude and estimated distance.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 7, 2017
    Inventors: Xiaoyong Yang, Darin K. Winterton
  • Publication number: 20170031007
    Abstract: An electronic device includes a ranging light source and a reflected light detector. A logic circuit causes the ranging light source to emit ranging light at a target. Reflected light from the target is detected using the reflected light detector, with the reflected light being a portion of the ranging light that reflects from the target back toward the reflected light detector. An intensity of the reflected light is determined using the reflected light detector. A distance to the target is determined based upon time elapsed between activating the ranging light source and detecting the reflected ranging light. Reflectance of the target is calculated, based upon the intensity of the reflected light and the distance to the target.
    Type: Application
    Filed: July 27, 2015
    Publication date: February 2, 2017
    Applicants: STMicroelectronics (Research & Development) Limited, STMicroelectronics, Inc.
    Inventors: Darin K. Winterton, Sam Lee