Patents by Inventor Darrel D. Hatley

Darrel D. Hatley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7016742
    Abstract: A method for minimizing the life cycle cost of processes such as heating a building. The method utilizes sensors to monitor various pieces of equipment used in the process, for example, boilers, turbines, and the like. The method then performs the steps of identifying a set optimal operating conditions for the process, identifying and measuring parameters necessary to characterize the actual operating condition of the process, validating data generated by measuring those parameters, characterizing the actual condition of the process, identifying an optimal condition corresponding to the actual condition, comparing said optimal condition with the actual condition and identifying variances between the two, and drawing from a set of pre-defined algorithms created using best engineering practices, an explanation of at least one likely source and at least one recommended remedial action for selected variances, and providing said explanation as an output to at least one user.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: March 21, 2006
    Assignee: BaHelle Memorial Institute
    Inventors: Donald B. Jarrell, Richard J. Meador, Daniel R. Sisk, Darrel D. Hatley, Daryl R. Brown, Gary R. Keibel, Krishnan Gowri, Jorge F. Reyes-Spindola, Kevin J. Adams, Kenneth R. Yates, Elizabeth J. Eschbach, Rex C. Stratton
  • Patent number: 6853951
    Abstract: Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: February 8, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Donald B. Jarrell, Daniel R. Sisk, Darrel D. Hatley, Leslie J. Kirihara, Timothy J. Peters
  • Publication number: 20040102924
    Abstract: A method for minimizing the life cycle cost of processes such as heating a building. The method utilizes sensors to monitor various pieces of equipment used in the process, for example, boilers, turbines, and the like. The method then performs the steps of identifying a set optimal operating conditions for the process, identifying and measuring parameters necessary to characterize the actual operating condition of the process, validating data generated by measuring those parameters, characterizing the actual condition of the process, identifying an optimal condition corresponding to the actual condition, comparing said optimal condition with the actual condition and identifying variances between the two, and drawing from a set of pre-defined algorithms created using best engineering practices, an explanation of at least one likely source and at least one recommended remedial action for selected variances, and providing said explanation as an output to at least one user.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: Donald B. Jarrell, Richard J. Meador, Daniel R. Sisk, Darrel D. Hatley, Daryl R. Brown, Gary R. Keibel, Krishnan Gowri, Jorge F. Reyes-Spindola, Kevin J. Adams, Kenneth R. Yates, Elizabeth J. Eschbach, Rex C. Stratton
  • Publication number: 20040030524
    Abstract: Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.
    Type: Application
    Filed: December 9, 2002
    Publication date: February 12, 2004
    Applicant: Battelle Memorial Institute
    Inventors: Donald B. Jarrell, Daniel R. Sisk, Darrel D. Hatley, Leslie J. Kirihara, Timothy J. Peters