Patents by Inventor Darrell R. Fisher

Darrell R. Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160193479
    Abstract: A system, method and device for treating tumor cells utilizing a resorbable therapy seed made up of microspheres containing a beta- or alpha-particle-emitting radiation source and a resorbable polymer matrix. These seeds are implanted within the tumor and then rapidly dissolved so as to release the microspheres from the polymer matrix. These microspheres then spread within a preselected target area and provide radiation therapy in a predetermined amount and at a preselected rate according the specific needs and necessities of the users. The configuration of the microspheres, the types of radiation provided and the location and use of these microspheres provides desired localized treatment to target cells while preferentially avoiding or minimizing undesired damage to surrounding tissue. The present invention provides a method for making the seeds, as well as a method for utilizing the seeds as a part of the treatment method.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Applicants: Battelle Memorial Institute, University of Utah Research Foundation
    Inventors: Darrell R. Fisher, You Han Bae, Zhonggao Gao
  • Patent number: 9289625
    Abstract: A system, method and device for treating tumor cells utilizing a resorbable therapy seed made up of microspheres containing a beta- or alpha-particle-emitting radiation source and a resorbable polymer matrix. These seeds are implanted within the tumor and then rapidly dissolved so as to release the microspheres from the polymer matrix. These microspheres then spread within a preselected target area and provide radiation therapy in a predetermined amount and at a preselected rate according the specific needs and necessities of the users. The configuration of the microspheres, the types of radiation provided and the location and use of these microspheres provides desired localized treatment to target cells while preferentially avoiding or minimizing undesired damage to surrounding tissue. The present invention provides a method for making the seeds, as well as a method for utilizing the seeds as a part of the treatment method.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: March 22, 2016
    Assignees: Battelle Memorial Institute, University of Utah Research Foundation
    Inventors: Darrell R. Fisher, You Han Bae, Zhonggao Gao
  • Publication number: 20140350326
    Abstract: A system, method and device for treating tumor cells utilizing a resorbable therapy seed made up of microspheres containing a beta- or alpha-particle-emitting radiation source and a resorbable polymer matrix. These seeds are implanted within the tumor and then rapidly dissolved so as to release the microspheres from the polymer matrix. These microspheres then spread within a preselected target area and provide radiation therapy in a predetermined amount and at a preselected rate according the specific needs and necessities of the users. The configuration of the microspheres, the types of radiation provided and the location and use of these microspheres provides desired localized treatment to target cells while preferentially avoiding or minimizing undesired damage to surrounding tissue. The present invention provides a method for making the seeds, as well as a method for utilizing the seeds as a part of the treatment method.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Darrell R. Fisher, You Han Bae, Zhonggao Gao
  • Patent number: 8821364
    Abstract: A system, method and device for treating tumor cells utilizing a resorbable therapy seed made up of microspheres containing a beta- or alpha-particle-emitting radiation source and a resorbable polymer matrix. These seeds are implanted within the tumor and then rapidly dissolved so as to release the microspheres from the polymer matrix. These microspheres then spread within a preselected target area and provide radiation therapy in a predetermined amount and at a preselected rate according the specific needs and necessities of the users. The configuration of the microspheres, the types of radiation provided and the location and use of these microspheres provides desired localized treatment to target cells while preferentially avoiding or minimizing undesired damage to surrounding tissue. The present invention provides a method for making the seeds, as well as a method for utilizing the seeds as a part of the treatment method.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: September 2, 2014
    Assignees: Battelle Memorial Institute, University of Utah Research Foundation
    Inventors: Darrell R. Fisher, You Han Bae, Zhonggao Gao
  • Patent number: 8425654
    Abstract: An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 23, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Amanda M. Johnsen, Chuck Z. Soderquist, Bruce K. McNamara, Darrell R. Fisher
  • Publication number: 20100056843
    Abstract: A system, method and device for treating tumor cells utilizing a resorbable therapy seed made up of microspheres containing a beta-particle-emitting radiation source and a resorbable polymer matrix. These seeds are implanted within the tumor and then rapidly dissolved or broken so as to release the microspheres. These microspheres then spread within a preselected target area and provide radiation therapy in a predetermined amount and at a preselected rate according the specific needs and necessities of the users. The configuration of the microspheres, the types of radiation provided and the location and use of these microspheres provides desired localized treatment to target cells while preferentially avoiding undesired damage to surrounding tissue. The present invention provides a method for making the seeds, as well as a method for utilizing the seeds as a part of the treatment method.
    Type: Application
    Filed: September 2, 2008
    Publication date: March 4, 2010
    Inventors: Darrell R. Fisher, You Han Bae
  • Publication number: 20100056844
    Abstract: A system, method and device for treating tumor cells utilizing a resorbable therapy seed made up of microspheres containing a beta- or alpha-particle-emitting radiation source and a resorbable polymer matrix. These seeds are implanted within the tumor and then rapidly dissolved so as to release the microspheres from the polymer matrix. These microspheres then spread within a preselected target area and provide radiation therapy in a predetermined amount and at a preselected rate according the specific needs and necessities of the users. The configuration of the microspheres, the types of radiation provided and the location and use of these microspheres provides desired localized treatment to target cells while preferentially avoiding or minimizing undesired damage to surrounding tissue. The present invention provides a method for making the seeds, as well as a method for utilizing the seeds as a part of the treatment method.
    Type: Application
    Filed: September 1, 2009
    Publication date: March 4, 2010
    Applicants: Battelle Memorial Institute, University of Utah Research Foundation
    Inventors: Darrell R. Fisher, You Han Bae, Zhonggao Gao
  • Publication number: 20080292545
    Abstract: Apoferritin nanoparticles with functionalized surfaces have been prepared that include preselected agents within the cavity of the apoferritin molecule and preselected functionalized surface characteristics on the outer surface of the nanoparticle. Such materials provide for utilization and selective modification in a variety of applications including therapeutic and diagnostic uses. Examples of several of these applications are described herein. In addition a method for the creation of these materials by alternatively assembling, functionalizing, or functionalizing, disassembling and reassemblying the materials provides for creative customization of various types of materials applicable for varying types of applications which are also described herein.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 27, 2008
    Inventors: Yuehe Lin, Guodong Liu, Hong Wu, Jun Wang, Darrell R. Fisher
  • Patent number: 6869588
    Abstract: The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: March 22, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Richard E. Weller, Michael A. Lind, Darrell R. Fisher, Anna Gutowska, Allison A. Campbell
  • Publication number: 20040228794
    Abstract: Disclosed herein are therapeutic agent carrier compositions that include a carrier comprised of a stimulus sensitive gel, fibrin, or combinations thereof, and a therapeutic agent such as an aqueous insoluble or confined radioisotope. Stimulus sensitive gels include thermally reversible stimulus-sensitive gels that are linear random copolymers of a [meth-]acrylamide derivative and a hydrophilic comonomer; thermogelling biodegradable polymers, which include biodegradable polymers including a linked polyethylene glycol (PEG) block and biodegradable polyester block; and enzymatically degradable polypeptide poylmers. In certain embodiments the therapeutic agent is a hydrothermally synthesized radioactive therapeutic agent, such a 90-yttrium phosphate colloid. Methods of making such carrier compositions and methods of using such carrier compositions to treat diseases such as cancer also are disclosed.
    Type: Application
    Filed: February 19, 2004
    Publication date: November 18, 2004
    Applicant: Battelle Memorial Institute
    Inventors: Richard E. Weller, Darrell R. Fisher, Michael A. Lind, Allison A. Campbell, Anna Gutowska, Craig F. Habeger
  • Patent number: 6489617
    Abstract: Disclosed is a is an improved flood source, and method of making the same, which emits an evenly distributed flow of energy from a gamma emitting radionuclide dispersed throughout the volume of the flood source. The flood source is formed by filling a bottom pan with a mix of epoxy resin with cobalt-57, preferably at 10 to 20 millicuries and then adding a hardener. The pan is secured to a flat, level surface to prevent the pan from warping and to act as a heat sink for removal of heat from the pan during the curing of the resin-hardener mixture.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: December 3, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Darrell R. Fisher, David L. Alexander, Stanley Satz
  • Publication number: 20020131935
    Abstract: The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier.
    Type: Application
    Filed: November 26, 2001
    Publication date: September 19, 2002
    Inventors: Darrell R. Fisher, Richard E. Weller, Michael A. Lind, Anna Gutowska, Allison A. Campbell
  • Patent number: 6296831
    Abstract: The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier.
    Type: Grant
    Filed: April 10, 1998
    Date of Patent: October 2, 2001
    Assignee: Battelle Memorial Institute
    Inventors: Richard E. Weller, Michael A. Lind, Darrell R. Fisher, Anna Gutowska, Allison A. Campbell
  • Publication number: 20010024636
    Abstract: The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier.
    Type: Application
    Filed: May 10, 2001
    Publication date: September 27, 2001
    Inventors: Richard E. Weller, Michael A. Lind, Darrell R. Fisher, Anna Gutowska, Allison A. Campbell
  • Patent number: 6117413
    Abstract: The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: September 12, 2000
    Assignees: Battelle Memorial Institute, Idaho Research Foundation, Inc.
    Inventors: Darrell R. Fisher, Chien M. Wai, Xiaoyuan Chen
  • Patent number: 6075130
    Abstract: The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: June 13, 2000
    Assignees: Battelle Memorial Institute, Idaho Research Foundation, Inc.
    Inventors: Xiaoyuan Chen, Chien M. Wai, Darrell R. Fisher