Patents by Inventor Darren Roy Link

Darren Roy Link has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10293341
    Abstract: This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: May 21, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Darren Roy Link, David A. Weitz, Manuel Marquez-Sanchez, Zhengdong Cheng
  • Publication number: 20190134581
    Abstract: The invention generally relates to methods for forming mixed droplets. In certain embodiments, methods of the invention involve forming a droplet, and contacting the droplet with a fluid stream, wherein a portion of the fluid stream integrates with the droplet to form a mixed droplet.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 9, 2019
    Inventors: Yevgeny Yurkovetsky, Darren Roy Link, Jonathan William Larson
  • Patent number: 10258985
    Abstract: This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: April 16, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Darren Roy Link, David A. Weitz, Manuel Marquez-Sanchez, Zhengdong Cheng
  • Publication number: 20190094226
    Abstract: The invention generally relates to methods for quantifying an amount of enzyme molecules. Systems and methods of the invention are provided for measuring an amount of target by forming a plurality of fluid partitions, a subset of which include the target, performing an enzyme-catalyzed reaction in the subset, and detecting the number of partitions in the subset. The amount of target can be determined based on the detected number.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Inventors: Darren Roy Link, Michael L. Samuels
  • Publication number: 20190024261
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalizing two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reaction between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control. The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalized into the microcapsules.
    Type: Application
    Filed: December 8, 2017
    Publication date: January 24, 2019
    Applicants: President and Fellows of Harvard College, Medical Research Council
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20180353913
    Abstract: The present invention generally relates to droplet libraries and to systems and methods for the formation of libraries of droplets. The present invention also relates to methods utilizing these droplet libraries in various biological, chemical, or diagnostic assays.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: Darren Roy Link, Brian Hutchison, Michael L. Samuels, Michael Weiner
  • Publication number: 20180355350
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 13, 2018
    Inventors: Darren Roy Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 10139411
    Abstract: The invention generally relates to methods for quantifying an amount of enzyme molecules. Systems and methods of the invention are provided for measuring an amount of target by forming a plurality of fluid partitions, a subset of which include the target, performing an enzyme-catalyzed reaction in the subset, and detecting the number of partitions in the subset. The amount of target can be determined based on the detected number.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: November 27, 2018
    Assignee: Raindance Technologies, Inc.
    Inventors: Darren Roy Link, Michael L. Samuels
  • Publication number: 20180305747
    Abstract: The invention generally relates to assemblies for displacing droplets from a vessel that facilitate the collection and transfer of the droplets while minimizing sample loss. In certain aspects, the assembly includes at least one droplet formation module, in which the module is configured to form droplets surrounded by an immiscible fluid. The assembly also includes at least one chamber including an outlet, in which the chamber is configured to receive droplets and an immiscible fluid, and in which the outlet is configured to receive substantially only droplets. The assembly further includes a channel, configured such that the droplet formation module and the chamber are in fluid communication with each other via the channel. In other aspects, the assembly includes a plurality of hollow members, in which the hollow members are channels and in which the members are configured to interact with a vessel.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventor: Darren Roy Link
  • Publication number: 20180280897
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Application
    Filed: June 1, 2018
    Publication date: October 4, 2018
    Inventors: Darren Roy Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Publication number: 20180272296
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Inventors: Darren Roy Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Publication number: 20180272294
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Application
    Filed: March 5, 2018
    Publication date: September 27, 2018
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20180272295
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Inventors: Darren Roy Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Publication number: 20180272299
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 27, 2018
    Applicants: President and Fellows of Harvard College, Medical Research Council
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Patent number: 10011865
    Abstract: The invention generally relates to assemblies for displacing droplets from a vessel that facilitate the collection and transfer of the droplets while minimizing sample loss. In certain aspects, the assembly includes at least one droplet formation module, in which the module is configured to form droplets surrounded by an immiscible fluid. The assembly also includes at least one chamber including an outlet, in which the chamber is configured to receive droplets and an immiscible fluid, and in which the outlet is configured to receive substantially only droplets. The assembly further includes a channel, configured such that the droplet formation module and the chamber are in fluid communication with each other via the channel. In other aspects, the assembly includes a plurality of hollow members, in which the hollow members are channels and in which the members are configured to interact with a vessel.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: July 3, 2018
    Assignee: RAINDANCE TECHNOLOGIES, INC.
    Inventor: Darren Roy Link
  • Publication number: 20180178174
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 28, 2018
    Inventors: Darren Roy Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Publication number: 20180135117
    Abstract: The invention generally relates to assemblies for displacing droplets from a vessel that facilitate the collection and transfer of the droplets while minimizing sample loss. In certain aspects, the assembly includes at least one droplet formation module, in which the module is configured to form droplets surrounded by an immiscible fluid. The assembly also includes at least one chamber including an outlet, in which the chamber is configured to receive droplets and an immiscible fluid, and in which the outlet is configured to receive substantially only droplets. The assembly further includes a channel, configured such that the droplet formation module and the chamber are in fluid communication with each other via the channel. In other aspects, the assembly includes a plurality of hollow members, in which the hollow members are channels and in which the members are configured to interact with a vessel.
    Type: Application
    Filed: January 5, 2018
    Publication date: May 17, 2018
    Inventor: Darren Roy Link
  • Publication number: 20180117585
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Application
    Filed: December 1, 2017
    Publication date: May 3, 2018
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Publication number: 20180080020
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 22, 2018
    Inventors: Darren Roy Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 9919277
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: March 20, 2018
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette