Patents by Inventor Darrin Uecker

Darrin Uecker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890134
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: February 6, 2024
    Assignee: Gynesonics, Inc.
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Patent number: 11583243
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: February 21, 2023
    Assignee: Gynesonics, Inc.
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Publication number: 20210346721
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 11, 2021
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 11097127
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: August 24, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20210228179
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Application
    Filed: April 15, 2021
    Publication date: July 29, 2021
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Publication number: 20210186455
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Application
    Filed: October 29, 2020
    Publication date: June 24, 2021
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Patent number: 10856838
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: December 8, 2020
    Assignee: Gynesonics, Inc.
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Publication number: 20190351254
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 19, 2018
    Publication date: November 21, 2019
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20180042572
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 15, 2018
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Patent number: 9861336
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 9, 2018
    Assignee: Gynesonics, Inc.
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Publication number: 20170065831
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9504853
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: November 29, 2016
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9320916
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 26, 2016
    Assignee: CYBERHEART, INC.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20160051843
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9205279
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 8, 2015
    Assignee: CYBERHEART, INC.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9039681
    Abstract: A medical system that allows a mentor to teach a pupil how to use a robotically controlled medical instrument. The system may include a first handle that can be controlled by a mentor to move the medical instrument. The system may further have a second handle that can be moved by a pupil to control the same instrument. Deviations between movement of the handles by the mentor and the pupil can be provided as force feedback to the pupil and mentor handles. The force feedback pushes the pupil's hand to correspond with the mentor's handle movement. The force feedback will also push the mentor's hand to provide information to the mentor on pupil's movements. The mentor is thus able to guide the pupil's hands through force feedback of the pupil handles to teach the pupil how to use the system.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: May 26, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Yulun Wang, Modjtaba Ghodoussi, Darrin Uecker, James Wright, Amante Mangaser, Ranjan Mukherjee
  • Patent number: 8992427
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 31, 2015
    Assignee: Gynesonics, Inc.
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz
  • Patent number: 8939891
    Abstract: A handle used to control movement of a medical instrument. The medical instrument may be coupled to a robotic arm that is connected to a controller. The medical instrument may have a plurality of functions such as wrist locking and motion scaling. One of the functions may be selected through a graphical user interface operated by the end user. The handle may have a plurality of buttons. One of the buttons may allow the end user to control the selected function. For example, when wrist locking/unlocking is selected, depressing the button can toggle the medical instrument wrist between a locked state and an unlocked state.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 27, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Dan Sanchez, Darrin Uecker
  • Patent number: 8784290
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 22, 2014
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20140073910
    Abstract: A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 13, 2014
    Applicant: GYNESONICS, INC.
    Inventors: Michael A. Munrow, Darrin Uecker, Brian Placek, Harry Kwan, David Toub, Cameron D. Hinman, David J. Danitz