Patents by Inventor Daryush Ila

Daryush Ila has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9537077
    Abstract: A thermoelectric device and method based on creating a structure of nanoclusters in a composite metal and insulator material by co-depositing the metal and insulator material and irradiating the composite material to create nanoclusters of metal within the composite material. In one variation, the composite material may be continuously deposited and concurrently irradiated. A further variation based on a multilayer structure having alternate layers of metal/material mixture. The alternate layers have differing metal content. The layer structure is irradiated with ionizing radiation to produce nanoclusters in the layers. The differing metal content serves to quench the nanoclusters to isolate nanoclusters along the radiation track. The result is a thermoelectric device with a high figure of merit. In one embodiment, the multilayer structure is fabricated and then irradiated with high energy radiation penetrating the entire layer structure.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: January 3, 2017
    Assignee: Fayetteville State University
    Inventor: Daryush Ila
  • Publication number: 20150020861
    Abstract: A thermoelectric device and method based on creating a structure of nanoclusters in a composite metal and insulator material by co-depositing the metal and insulator material and irradiating the composite material to create nanoclusters of metal within the composite material. In one variation, the composite material may be continuously deposited and concurrently irradiated. A further variation based on a multilayer structure having alternate layers of metal/material mixture. The alternate layers have differing metal content. The layer structure is irradiated with ionizing radiation to produce nanoclusters in the layers. The differing metal content serves to quench the nanoclusters to isolate nanoclusters along the radiation track. The result is a thermoelectric device with a high figure of merit. In one embodiment, the multilayer structure is fabricated and then irradiated with high energy radiation penetrating the entire layer structure.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 22, 2015
    Inventor: Daryush ILA
  • Patent number: 8841539
    Abstract: A thermoelectric device based on a multilayer structure having alternate layers of metal/material mixture. The alternate layers have differing metal content. The layer structure is irradiated with ionizing radiation to produce nanoclusters in the layers. The differing metal content serves to quench the nanoclusters to isolate nanoclusters along the radiation track. The result is a thermoelectric device with a high figure of merit. In one embodiment, the multilayer structure is fabricated and then irradiated with high energy radiation penetrating the entire layer structure. In another embodiment, layers are irradiated sequentially during fabrication using low energy radiation.
    Type: Grant
    Filed: March 25, 2012
    Date of Patent: September 23, 2014
    Assignee: Fayetteville State University
    Inventor: Daryush Ila
  • Publication number: 20130247949
    Abstract: A thermoelectric device based on a multilayer structure having alternate layers of metal/material mixture. The alternate layers have differing metal content. The layer structure is irradiated with ionizing radiation to produce nanoclusters in the layers. The differing metal content serves to quench the nanoclusters to isolate nanoclusters along the radiation track. The result is a thermoelectric device with a high figure of merit. In one embodiment, the multilayer structure is fabricated and then irradiated with high energy radiation penetrating the entire layer structure. In another embodiment, layers are irradiated sequentially during fabrication using low energy radiation.
    Type: Application
    Filed: March 25, 2012
    Publication date: September 26, 2013
    Applicant: FAYETTEVILLE STATE UNIVERSITY
    Inventor: Daryush ILA
  • Publication number: 20100221861
    Abstract: A high efficiency thermo electric device and associated method of making, the device comprising a multilayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanoclusters of the metal material in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 2, 2010
    Applicant: Alabama A&M University Research Institute
    Inventor: Daryush Ila
  • Patent number: 7687705
    Abstract: A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: March 30, 2010
    Assignee: Alabama A&M University Institute
    Inventor: Daryush Ila
  • Publication number: 20090242386
    Abstract: A system of the present disclosure has a particle source that generates an ion beam and a vacuum chamber that houses a polymer film. The particle source bombards the polymer film with the ion beam. The system further has a controller that controls the particle source based upon an amount of the gas detected within the vacuum chamber.
    Type: Application
    Filed: March 27, 2009
    Publication date: October 1, 2009
    Inventors: Renato Amaral Minamisawa, Robert Lee Zimmerman, Daryush Ila
  • Publication number: 20070235070
    Abstract: A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 11, 2007
    Applicant: Alabama A&M University Research Institute
    Inventor: Daryush Ila