Patents by Inventor Dattatreya Baragur Suryanarayana

Dattatreya Baragur Suryanarayana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973423
    Abstract: A system includes a load and a switching converter coupled to the load. The switching converter includes at least one switching module and an output inductor coupled to a switch node of each switching module. The switching converter also includes a controller coupled to each switching module, where the controller is configured to adjust a pulse clock rate and a switch on-time for each switching module. The controller comprises a pulse truncation circuit configured to detect a voltage overshoot condition and to truncate an active switch on-time pulse in response to the detected voltage overshoot condition.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 30, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kuang-Yao Cheng, Muthusubramanian Venkateswaran, Dattatreya Baragur Suryanarayana, Preetam Charan Anand Tadeparthy
  • Publication number: 20240039406
    Abstract: A DC-DC converter includes a current sense circuit. The current sense circuit includes a sense current output, an inductor current measurement circuit, an inductor current emulation circuit, a first switch, and a second switch. The inductor current measurement circuit has an output. The inductor current emulation circuit has an output. The first switch is coupled between the output of the inductor current measurement circuit and the sense current output. The second switch is coupled between the output of the inductor current emulation circuit and the sense current output.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Rengang CHEN, Bo WANG, Evan REUTZEL, Dattatreya Baragur SURYANARAYANA, Bhaskar RAMACHANDRAN, Preetam TADEPARTHY
  • Publication number: 20230400490
    Abstract: In an example, a circuit includes an emulated current generator configured to provide an emulated current signal responsive to a charge current and a discharge current. The emulated current signal can be representative of an emulated current through an output inductor. A comparator is configured to provide a comparator signal responsive to the emulated current signal and sensed current signal representative of a measure of current through the output inductor. An inductor code counter is configured to adjust an inductor code count value responsive to the comparator signal. A slope of the emulated current signal can be adjusted responsive to the inductor code count value.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 14, 2023
    Inventors: Rengang CHEN, Bo WANG, Evan REUTZEL, Dattatreya Baragur SURYANARAYANA, Bhaskar RAMACHANDRAN, Preetam TADEPARTHY
  • Patent number: 11601058
    Abstract: A circuit for a multi-phase power regulator including a power stage with a first phase and a second phase, the circuit including phase management circuitry coupled to the first phase and the second phase to control the first phase and the second phase, a first comparator coupled to an output of the multi-phase power regulator to compare a value of the output of the multi-phase power regulator to a first threshold value to produce a first comparison result, and phase shedding circuitry coupled to the first comparator and the phase management circuitry to control the phase management circuitry to activate or deactivate the second phase based at least partially on the first comparison result.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: March 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kuang-Yao Cheng, Wenkai Wu, Preetam Tadeparthy, Nancy Zhang, Dattatreya Baragur Suryanarayana, Naga Venkata Prasadu Mangina
  • Publication number: 20210242779
    Abstract: A system includes a load and a switching converter coupled to the load. The switching converter includes at least one switching module and an output inductor coupled to a switch node of each switching module. The switching converter also includes a controller coupled to each switching module, where the controller is configured to adjust a pulse clock rate and a switch on-time for each switching module. The controller comprises a pulse truncation circuit configured to detect a voltage overshoot condition and to truncate an active switch on-time pulse in response to the detected voltage overshoot condition.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 5, 2021
    Inventors: Kuang-Yao Cheng, Muthusubramanian Venkateswaran, Dattatreya Baragur Suryanarayana, Preetam Charan Anand Tadeparthy
  • Patent number: 11031868
    Abstract: A system includes a load and a switching converter coupled to the load. The switching converter includes at least one switching module and an output inductor coupled to a switch node of each switching module. The switching converter also includes a controller coupled to each switching module, where the controller is configured to adjust a pulse clock rate and a switch on-time for each switching module. The controller comprises a pulse truncation circuit configured to detect a voltage overshoot condition and to truncate an active switch on-time pulse in response to the detected voltage overshoot condition.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: June 8, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kuang-Yao Cheng, Muthusubramanian Venkateswaran, Dattatreya Baragur Suryanarayana, Preetam Charan Anand Tadeparthy
  • Patent number: 10996256
    Abstract: A current detection system includes an inductor and a detection circuit coupled across the inductor. The inductor is configured to receive an input signal that includes an input current and generate a voltage across the inductor. The current detection circuit includes a sensing network and a transconductance amplifier. The sensing network includes a capacitor and is configured to monitor a voltage across the inductor. The transconductance amplifier is configured to receive a differential voltage indicative of a voltage drop across the capacitor and output a differential output current proportional to the differential voltage.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 4, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Sudeep Banerji, Dattatreya Baragur Suryanarayana, Vikram Gakhar, Preetam Tadeparthy, Vikas Lakhanpal, Muthusubramanian Venkateswaran, Vishnuvardhan Reddy J
  • Publication number: 20210099084
    Abstract: A system includes a load and a switching converter coupled to the load. The switching converter includes at least one switching module and an output inductor coupled to a switch node of each switching module. The switching converter also includes a controller coupled to each switching module, where the controller is configured to adjust a pulse clock rate and a switch on-time for each switching module. The controller comprises a pulse truncation circuit configured to detect a voltage overshoot condition and to truncate an active switch on-time pulse in response to the detected voltage overshoot condition.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Kuang-Yao CHENG, Muthusubramanian VENKATESWARAN, Dattatreya Baragur SURYANARAYANA, Preetam Charan Anand Tadeparthy
  • Patent number: 10910822
    Abstract: A system includes a first transistor having a first control input and first and second current terminals. The first current terminal couples to an input voltage node. A second transistor has a second control input and third and fourth current terminals. The third current terminal couples to the second current terminal at a first node. The fourth current terminal couples to an output voltage node. A drive circuit is configured to charge a capacitor maintain the first transistor in an off state responsive to a negative voltage on the input voltage node, and, responsive to a negative voltage on the input voltage node, to cause the charge from the capacitor to be used to turn off the first transistor. The system provides a voltage to a load coupled to the output voltage node.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: February 2, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bhaskar Ramachandran, Dattatreya Baragur Suryanarayana, Vishal Gupta
  • Publication number: 20200333390
    Abstract: A current detection system includes an inductor and a detection circuit coupled across the inductor. The inductor is configured to receive an input signal that includes an input current and generate a voltage across the inductor. The current detection circuit includes a sensing network and a transconductance amplifier. The sensing network includes a capacitor and is configured to monitor a voltage across the inductor. The transconductance amplifier is configured to receive a differential voltage indicative of a voltage drop across the capacitor and output a differential output current proportional to the differential voltage.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Sudeep Banerji, Dattatreya Baragur Suryanarayana, Vikram Gakhar, Preetam Tadeparthy, Vikas Lakhanpal, Muthusubramanian Venkateswaran, Vishnuvardhan Reddy J
  • Patent number: 10797689
    Abstract: An apparatus includes an output transistor device configured to control an output voltage of an output node in response to a control signal and an input voltage. A current sensor is configured to sense an output current supplied from the output node. A feedback converter is configured to convert the sensed output current to a feedback signal that tracks the output voltage of the output node. The feedback converter is further configured to set a clamping threshold. A gate control circuit is configured to generate the control signal in response to the feedback signal. The gate control circuit is configured to clamp the output voltage of the output node via the control signal based on the clamping threshold.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: October 6, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Subrato Roy, Dattatreya Baragur Suryanarayana
  • Patent number: 10784829
    Abstract: A circuit includes a power transistor including a first control input and first and second current terminals, the second current terminal to be coupled to a load to provide current to the load. A second transistor includes a second control input and third and fourth current terminals, and the first and second control inputs connected together and the first and third current terminals connected together. A third transistor includes a third control input and fifth and sixth current terminals. A fourth transistor includes a fourth control input and seventh and eighth current terminals, and the seventh current terminal is coupled to the fourth and fifth current terminals. An amplifier amplifies a difference between voltages on the second and fourth current terminals. An output of the amplifier is coupled to the third control input and a diode device is connected between the third and fourth control inputs.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 22, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Dattatreya Baragur Suryanarayana, Kushal D Murthy
  • Patent number: 10746778
    Abstract: A current detection system includes an inductor and a detection circuit coupled across the inductor. The inductor is configured to receive an input signal that includes an input current and generate a voltage across the inductor. The current detection circuit includes a sensing network and a transconductance amplifier. The sensing network includes a capacitor and is configured to monitor a voltage across the inductor. The transconductance amplifier is configured to receive a differential voltage indicative of a voltage drop across the capacitor and output a differential output current proportional to the differential voltage.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 18, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Sudeep Banerji, Dattatreya Baragur Suryanarayana, Vikram Gakhar, Preetam Tadeparthy, Vikas Lakhanpal, Muthusubramanian Venkateswaran, Vishnuvardhan Reddy J
  • Publication number: 20200144922
    Abstract: A circuit for a multi-phase power regulator including a power stage with a first phase and a second phase, the circuit including phase management circuitry coupled to the first phase and the second phase to control the first phase and the second phase, a first comparator coupled to an output of the multi-phase power regulator to compare a value of the output of the multi-phase power regulator to a first threshold value to produce a first comparison result, and phase shedding circuitry coupled to the first comparator and the phase management circuitry to control the phase management circuitry to activate or deactivate the second phase based at least partially on the first comparison result.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Kuang-Yao Cheng, Wenkai Wu, Preetam Tadeparthy, Nancy Zhang, Dattatreya Baragur Suryanarayana, Naga Venkata Prasadu Mangina
  • Patent number: 10644594
    Abstract: A control circuit for a DC-DC converter and a DC-DC converter are disclosed. The control circuit includes an integrator coupled to receive a first reference voltage and a first voltage that includes an output voltage for the DC-DC converter and to provide an integrated error signal. A first comparator is coupled to receive the first reference voltage and the first voltage and to provide a dynamic-integration signal that adjusts the integration time constant of the integrator.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: May 5, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kuang-Yao Cheng, Preetam Tadeparthy, Muthusubramanian Venkateswaran, Vikram Gakhar, Dattatreya Baragur Suryanarayana
  • Patent number: 10579082
    Abstract: An apparatus includes a power transistor to conduct a load current from a supply voltage node to an output node and a current sense circuit coupled to the power transistor. The current sense circuit generates a current sense current proportional to the load current. A temperature sense circuit is included to generate a temperature sense voltage proportional to the temperature of the power FET. A thermal limit circuit is coupled to the temperature sense circuit. A current limit circuit is coupled to the current sense circuit and to the thermal limit circuit. The current limit circuit generates a control signal on a current limit circuit output node. The control signal is responsive to the current sense current and to a first current from the thermal limit circuit. The current limit circuit output node is coupled to a control input of the power transistor.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 3, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Aalok Dyuti Saha, Bhaskar Ramachandran, Dattatreya Baragur Suryanarayana
  • Patent number: 10560023
    Abstract: A circuit for a multi-phase power regulator including a power stage with a first phase and a second phase, the circuit including phase management circuitry coupled to the first phase and the second phase to control the first phase and the second phase, a first comparator coupled to an output of the multi-phase power regulator to compare a value of the output of the multi-phase power regulator to a first threshold value to produce a first comparison result, and phase shedding circuitry coupled to the first comparator and the phase management circuitry to control the phase management circuitry to activate or deactivate the second phase based at least partially on the first comparison result.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 11, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Kuang-Yao Cheng, Wenkai Wu, Preetam Tadeparthy, Nancy Zhang, Dattatreya Baragur Suryanarayana, Naga Venkata Prasadu Mangina
  • Patent number: 10551859
    Abstract: In a described example, a method includes using a power supply, supplying an output voltage that varies in response to a reference voltage; detecting a voltage ramp in an input reference voltage; generating an offset voltage waveform; adding the offset voltage waveform to the input reference voltage to generate a second reference voltage; and using the second reference voltage, operating the power supply to supply the output voltage.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: February 4, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Vikram Gakhar, Preetam Tadeparthy, Dattatreya Baragur Suryanarayana, Muthusubramanian Venkateswaran, Vikas Lakhanpal
  • Publication number: 20200012304
    Abstract: An apparatus includes a power transistor to conduct a load current from a supply voltage node to an output node and a current sense circuit coupled to the power transistor. The current sense circuit generates a current sense current proportional to the load current. A temperature sense circuit is included to generate a temperature sense voltage proportional to the temperature of the power FET. A thermal limit circuit is coupled to the temperature sense circuit. A current limit circuit is coupled to the current sense circuit and to the thermal limit circuit. The current limit circuit generates a control signal on a current limit circuit output node. The control signal is responsive to the current sense current and to a first current from the thermal limit circuit. The current limit circuit output node is coupled to a control input of the power transistor.
    Type: Application
    Filed: December 3, 2018
    Publication date: January 9, 2020
    Inventors: Aalok Dyuti SAHA, Bhaskar RAMACHANDRAN, Dattatreya BARAGUR SURYANARAYANA
  • Publication number: 20200014350
    Abstract: A circuit includes a power transistor including a first control input and first and second current terminals, the second current terminal to be coupled to a load to provide current to the load. A second transistor includes a second control input and third and fourth current terminals, and the first and second control inputs connected together and the first and third current terminals connected together. A third transistor includes a third control input and fifth and sixth current terminals. A fourth transistor includes a fourth control input and seventh and eighth current terminals, and the seventh current terminal is coupled to the fourth and fifth current terminals. An amplifier amplifies a difference between voltages on the second and fourth current terminals. An output of the amplifier is coupled to the third control input and a diode device is connected between the third and fourth control inputs.
    Type: Application
    Filed: December 17, 2018
    Publication date: January 9, 2020
    Inventors: Dattatreya BARAGUR SURYANARAYANA, Kushal D MURTHY