Patents by Inventor Dattesh Dayanand Shanbhag

Dattesh Dayanand Shanbhag has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138697
    Abstract: A method for generating an image of a subject with a magnetic resonance imaging (MRI) system is presented. The method includes first performing a localizer scan of the subject to acquire localizer scan data. A machine learning (ML) module is then used to detect the presence of metal regions in the localizer scan data based on magnitude and phase information of the localizer scan data. Based on the detected metal regions in the localizer scan data, the MRI workflow is adjusted for diagnostic scan of the subject. The image of the subject is then generated using the adjusted workflow.
    Type: Application
    Filed: October 26, 2022
    Publication date: May 2, 2024
    Inventors: Dattesh Dayanand Shanbhag, Chitresh Bhushan, Deepa Anand, Kavitha Manickam, Dawei Gui, Radhika Madhavan
  • Publication number: 20240029415
    Abstract: Systems and methods are provided for an image processing system. In an example, a method includes acquiring a pathology dataset, acquiring a reference dataset, generating a deformation field by mapping points of a reference case of the reference dataset to points of a patient image of the pathology dataset, manipulating the deformation field, applying the deformation field to the reference case to generate a simulated pathology image including a simulated deformation pathology, and outputting the simulated pathology image.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Inventors: Dattesh Dayanand Shanbhag, Chitresh Bhushan, Soumya Ghose, Deepa Anand
  • Publication number: 20240005480
    Abstract: Methods and systems are provided for automatic placement of at least one saturation band on a medical image, which may direct saturation pulses during a MRI scan. A method may include acquiring a localizer image of an imaging subject, determining a plane mask for the localizer image by entering the localizer image as input to a deep neural network trained to output the plane mask based on the localizer image, generating a saturation band based on the plane mask by positioning the saturation band at a position and an angulation of the plane mask, and outputting a graphical prescription for display on a display device, the graphical prescription including the saturation band overlaid on the medical image.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Inventors: Chitresh Bhushan, Dattesh Dayanand Shanbhag, Soumya Ghose, Amod Suhas Jog
  • Patent number: 11808832
    Abstract: A computer-implemented method for generating an artifact corrected reconstructed contrast image from magnetic resonance imaging (MRI) data is provided. The method includes inputting into a trained deep neural network both a synthesized contrast image derived from multi-delay multi-echo (MDME) scan data or the MDME scan data acquired during a first scan of an object of interest utilizing a MDME sequence and a composite image, wherein the composite image is derived from both the MDME scan data and contrast scan data acquired during a second scan of the object of interest utilizing a contrast MRI sequence. The method also includes utilizing the trained deep neural network to generate the artifact corrected reconstructed contrast image based on both the synthesized contrast image or the MDME scan data and the composite image. The method further includes outputting from the trained deep neural network the artifact corrected reconstructed contrast image.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: November 7, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Sudhanya Chatterjee, Dattesh Dayanand Shanbhag
  • Publication number: 20230342913
    Abstract: Techniques are described for generating high quality training data collections for training artificial intelligence (AI) models in the medical imaging domain. A method embodiment comprises receiving, by a system comprising processor, input indicating a clinical context associated with usage of a medical image dataset, and selecting, by the system, one or more data scrutiny metrics for filtering the medical image dataset based on the clinical context. The method further comprises applying, by the system, one or more image processing functions to the medical image dataset to generate metric values of the one or more data scrutiny metrics for respective medical images included in the medical image dataset, filtering, by the system, the medical image dataset into one or more subsets based on one or more acceptability criteria for the metric values.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 26, 2023
    Inventors: Mahendra Madhukar Patil, Rakesh Mullick, Sudhanya Chatterjee, Syed Asad Hashmi, Dattesh Dayanand Shanbhag, Deepa Anand, Suresh Emmanuel Devadoss Joel
  • Publication number: 20230341914
    Abstract: Techniques are described for generating reformatted views of a three-dimensional (3D) anatomy scan using deep-learning estimated scan prescription masks. According to an embodiment, a system is provided that comprises a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory. The computer executable components comprise a mask generation component that employs a pre-trained neural network model to generate masks for different anatomical landmarks depicted in one or more calibration images captured of an anatomical region of a patient. The computer executable components further comprise a reformatting component that reformats 3D image data captured of the anatomical region of the patient using the masks to generate different representations of the 3D image data that correspond to the different anatomical landmarks.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Inventors: Chitresh Bhushan, Dattesh Dayanand Shanbhag, Rakesh Mullick
  • Patent number: 11776173
    Abstract: Techniques are described for generating reformatted views of a three-dimensional (3D) anatomy scan using deep-learning estimated scan prescription masks. According to an embodiment, a system is provided that comprises a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory. The computer executable components comprise a mask generation component that employs a pre-trained neural network model to generate masks for different anatomical landmarks depicted in one or more calibration images captured of an anatomical region of a patient. The computer executable components further comprise a reformatting component that reformats 3D image data captured of the anatomical region of the patient using the masks to generate different representations of the 3D image data that correspond to the different anatomical landmarks.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: October 3, 2023
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Chitresh Bhushan, Dattesh Dayanand Shanbhag, Rakesh Mullick
  • Publication number: 20230293014
    Abstract: The present disclosure relates to use of a workflow for automatic prescription of different radiological imaging scan planes across different anatomies and modalities. The automated prescription of such imaging scan planes helps ensure contiguous visualization of the different landmark structures. Unlike prior approaches, the disclosed technique determines the necessary planes using the localizer images itself and does not explicitly segment or delineate the landmark structures to perform plane prescription.
    Type: Application
    Filed: May 3, 2023
    Publication date: September 21, 2023
    Inventors: Dattesh Dayanand Shanbhag, Rekesh Mullick, Arathi Sreekumari, Uday Damodar Patil, Trevor John Kolupar, Chitresh Bhushan, Andre de Almeida Maximo, Thomas Kwok-Fah Foo, Maggie MeiKei Fung
  • Patent number: 11763429
    Abstract: A medical imaging system having at least one medical imaging device providing image data of a subject is provided. The medical imaging system further includes a processing system programmed to train a deep learning (DL) network using a plurality of training images to predict noise in input data. The plurality of training images includes a plurality of excitation (NEX) images acquired for each line of k-space training data. The processing system is further programmed to use the trained DL network to determine noise in the image data of the subject and to generate a denoised medical image of the subject having reduced noise based on the determined noise in the image data.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: September 19, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Sudhanya Chatterjee, Dattesh Dayanand Shanbhag
  • Publication number: 20230290487
    Abstract: Methods and systems are provided for reconstructing images from measurement data using one or more deep neural networks according to a decimation strategy. In one embodiment, a method for reconstructing an image using measurement data comprises, receiving measurement data acquired by an imaging device, selecting a decimation strategy, producing a reconstructed image from the measurement data using the decimation strategy and one or more deep neural networks, and displaying the reconstructed image via a display device. By decimating measurement data to form one or more decimated measurement data arrays, a computational complexity of mapping the measurement data to image data may be reduced from O(N4), where N is the size of the measurement data, to O(M4), where M is the size of an individual decimated measurement data array, wherein M<N.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 14, 2023
    Inventors: Hariharan Ravishankar, Dattesh Dayanand Shanbhag
  • Publication number: 20230260142
    Abstract: Systems/techniques that facilitate multi-modal image registration via modality-neutral machine learning transformation are provided. In various embodiments, a system can access a first image and a second image, where the first image can depict an anatomical structure according to a first imaging modality, and where the second image can depict the anatomical structure according to a second imaging modality that is different from the first imaging modality. In various aspects, the system can generate, via execution of a machine learning model on the first image and the second image, a modality-neutral version of the first image and a modality-neutral version of the second image. In various instances, the system can register the first image with the second image, based on the modality-neutral version of the first image and the modality-neutral version of the second image.
    Type: Application
    Filed: January 24, 2022
    Publication date: August 17, 2023
    Inventors: Sudhanya Chatterjee, Dattesh Dayanand Shanbhag, Krishna Seetharam Shriram
  • Patent number: 11699515
    Abstract: Methods and systems are provided for reconstructing images from measurement data using one or more deep neural networks according to a decimation strategy. In one embodiment, a method for reconstructing an image using measurement data comprises, receiving measurement data acquired by an imaging device, selecting a decimation strategy, producing a reconstructed image from the measurement data using the decimation strategy and one or more deep neural networks, and displaying the reconstructed image via a display device. By decimating measurement data to form one or more decimated measurement data arrays, a computational complexity of mapping the measurement data to image data may be reduced from O(N4), where N is the size of the measurement data, to O(M4), where M is the size of an individual decimated measurement data array, wherein M<N.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: July 11, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Hariharan Ravishankar, Dattesh Dayanand Shanbhag
  • Publication number: 20230094940
    Abstract: A deep learning-based continuous federated learning network system is provided. The system includes a global site comprising a global model and a plurality of local sites having a respective local model derived from the global model. The plurality of model tuning modules having a processing system are provided at the plurality of local sites for tuning the respective local model. The processing system is programmed to receive incremental data and select one or more layers of the local model for tuning based on the incremental data. Finally, the selected layers are tuned to generate a retrained model.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Inventors: Radhika Madhavan, Soumya Ghose, Dattesh Dayanand Shanbhag, Andre De Almeida Maximo, Chitresh Bhushan, Desmond Teck Beng Yeo, Thomas Kwok-Fah Foo
  • Patent number: 11610313
    Abstract: Methods and systems are provided for generating a normative medical image from an anomalous medical image. In an example, the method includes receiving an anomalous medical image, wherein the anomalous medical image includes anomalous data, mapping the anomalous medical image to a normative medical image using a trained generative network of a generative adversarial network (GAN), wherein the anomalous data of the anomalous medical image is mapped to normative data in the normative medical image. In some examples, the method may further include displaying the normative medical image via a display device, and/or utilizing the normative medical image for further image analysis tasks to generate robust outcomes from the anomalous medical image.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: March 21, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Dattesh Dayanand Shanbhag, Arathi Sreekumari, Sandeep Kaushik
  • Patent number: 11605455
    Abstract: The subject matter discussed herein relates to systems and methods for generating a clinical outcome based on creating a task-specific model associated with processing raw image(s). In one such example, input raw data is acquired using an imaging system, a selection input corresponding to a clinical task is received, and a task-specific model corresponding to the clinical task is retrieved. Using the task-specific model, the raw data is mapped onto an application specific manifold. Based on the mapping of the raw data onto the application specific manifold the clinical outcome is generated, and subsequently providing the clinical outcome for review.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 14, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Dattesh Dayanand Shanbhag, Hariharan Ravishankar, Rahul Venkataramani
  • Publication number: 20230004872
    Abstract: A computer implemented method is provided. The method includes establishing, via multiple processors, a continuous federated learning framework including a global model at a global site and respective local models derived from the global model at respective local sites. The method also includes retraining or retuning, via the multiple processors, the global model and the respective local models without sharing actual datasets between the global site and the respective local sites but instead sharing synthetic datasets generated from the actual datasets.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 5, 2023
    Inventors: Soumya Ghose, Radhika Madhavan, Chitresh Bhushan, Dattesh Dayanand Shanbhag, Deepa Anand, Desmond Teck Beng Yeo, Thomas Kwok-Fah Foo
  • Publication number: 20220397627
    Abstract: A computer-implemented method for generating an artifact corrected reconstructed contrast image from magnetic resonance imaging (MRI) data is provided. The method includes inputting into a trained deep neural network both a synthesized contrast image derived from multi-delay multi-echo (MDME) scan data or the MDME scan data acquired during a first scan of an object of interest utilizing a MDME sequence and a composite image, wherein the composite image is derived from both the MDME scan data and contrast scan data acquired during a second scan of the object of interest utilizing a contrast MRI sequence. The method also includes utilizing the trained deep neural network to generate the artifact corrected reconstructed contrast image based on both the synthesized contrast image or the MDME scan data and the composite image. The method further includes outputting from the trained deep neural network the artifact corrected reconstructed contrast image.
    Type: Application
    Filed: June 10, 2021
    Publication date: December 15, 2022
    Inventors: Sudhanya Chatterjee, Dattesh Dayanand Shanbhag
  • Publication number: 20220375035
    Abstract: A medical imaging system having at least one medical imaging device providing image data of a subject is provided. The medical imaging system further includes a processing system programmed to train a deep learning (DL) network using a plurality of training images to predict noise in input data. The plurality of training images includes a plurality of excitation (NEX) images acquired for each line of k-space training data. The processing system is further programmed to use the trained DL network to determine noise in the image data of the subject and to generate a denoised medical image of the subject having reduced noise based on the determined noise in the image data.
    Type: Application
    Filed: May 19, 2021
    Publication date: November 24, 2022
    Inventors: Sudhanya Chatterjee, Dattesh Dayanand Shanbhag
  • Patent number: 11506739
    Abstract: Methods and systems are provided for determining scan settings for a localizer scan based on a magnetic resonance (MR) calibration image. In one example, a method for magnetic resonance imaging (MRI) includes acquiring an MR calibration image of an imaging subject, mapping, by a trained deep neural network, the MR calibration image to a corresponding anatomical region of interest (ROI) attribute map for an anatomical ROI of the imaging subject, adjusting one or more localizer scan parameters based on the anatomical ROI attribute map, and acquiring one or more localizer images of the anatomical ROI according to the one or more localizer scan parameters.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: November 22, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Dawei Gui, Dattesh Dayanand Shanbhag, Chitresh Bhushan, André de Almeida Maximo
  • Publication number: 20220358692
    Abstract: Techniques are described for generating reformatted views of a three-dimensional (3D) anatomy scan using deep-learning estimated scan prescription masks. According to an embodiment, a system is provided that comprises a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory. The computer executable components comprise a mask generation component that employs a pre-trained neural network model to generate masks for different anatomical landmarks depicted in one or more calibration images captured of an anatomical region of a patient. The computer executable components further comprise a reformatting component that reformats 3D image data captured of the anatomical region of the patient using the masks to generate different representations of the 3D image data that correspond to the different anatomical landmarks.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 10, 2022
    Inventors: Chitresh Bhushan, Dattesh Dayanand Shanbhag, Rakesh Mullick