Patents by Inventor David A. Dewey

David A. Dewey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10123696
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 13, 2018
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G Gonzalez, Raymond Woo, Thomas Z Teisseyre, Jeffrey A Golda, Katrina B Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Patent number: 10085886
    Abstract: A system for ophthalmic surgery includes a laser source configured to deliver an ultraviolet laser beam comprising laser pulses having a wavelength between 320 nm and 370 nm to photodecompose one or more intraocular targets within the eye with chromophore absorbance. The pulse energy, the pulse duration, and the focal spot are such that an irradiance at the focal spot is sufficient to photodecompose the one or more intraocular targets without exceeding a threshold of formation of a plasma and an associated cavitation event. An optical system operatively coupled to the laser source and configured to focus the ultraviolet laser beam to a focal spot and direct the focal spot in a pattern into the one or more intraocular targets. The optical system focuses the laser beam at a numerical aperture that provides for the focal spot to be scanned over a scan range of 6 mm to 10 mm.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: October 2, 2018
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Georg Schuele, Dan Andersen, David Dewey
  • Publication number: 20180214305
    Abstract: A laser surgical method for performing a corneal incision while maintaining iris exposure below a predetermined exposure limit includes: determining an initial iris exposure based on an initial treatment scan, determining whether the initial iris exposure is less than the predetermined exposure limit; generating a revised treatment scan comprising one or more treatment scan modifying elements when the initial iris exposure is greater than the predetermined exposure limit, and scanning the focal zone of a pulsed laser beam according to the revised treatment scan, thereby performing the corneal incision, wherein the one or more treatment scan modifying elements causes the iris exposure to be smaller than the predetermined exposure limit.
    Type: Application
    Filed: January 31, 2018
    Publication date: August 2, 2018
    Inventors: Georg Schuele, David A. Dewey, Javier G. Gonzalez, Alexander Vankov
  • Patent number: 10027816
    Abstract: The invention may verify calls to a telephone device by activating call forwarding to redirect calls for the telephone device to a prescribed destination; receiving a message from a server verifying the call; deactivating call forwarding to receive the call; and reactivating call forwarding when the call is concluded. In another embodiment, the invention may, in response to a telephone device initiating a call to a second telephone device installed with a particular application or software, transmit a message to a server causing it to instruct the second telephone device to deactivate call forwarding. In yet another embodiment, the invention may cause a server to receive a message from a prescribed location indicating that a call was received via call forwarding, and in response to the message, transmit an instruction to the intended recipient to deactivate the call forwarding if the call is verified as legitimate.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 17, 2018
    Assignee: Pindrop Security, Inc.
    Inventors: Payas Gupta, David Dewey
  • Publication number: 20180152561
    Abstract: Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors.
    Type: Application
    Filed: January 25, 2018
    Publication date: May 31, 2018
    Applicant: PINDROP SECURITY, INC.
    Inventors: Scott STRONG, Kailash PATIL, David DEWEY, Raj BANDYOPADHYAY, Telvis CALHOUN, Vijay BALASUBRAMANIYAN
  • Patent number: 9930186
    Abstract: Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: March 27, 2018
    Assignee: PINDROP SECURITY, INC.
    Inventors: Raj Bandyopadhyay, Kailash Patil, David Dewey, Scott Strong, Telvis Calhoun, Vijay Balasubramaniyan
  • Publication number: 20180041638
    Abstract: The invention may verify calls to a telephone device by activating call forwarding to redirect calls for the telephone device to a prescribed destination; receiving a message from a server verifying the call; deactivating call forwarding to receive the call; and reactivating call forwarding when the call is concluded. In another embodiment, the invention may, in response to a telephone device initiating a call to a second telephone device installed with a particular application or software, transmit a message to a server causing it to instruct the second telephone device to deactivate call forwarding. In yet another embodiment, the invention may cause a server to receive a message from a prescribed location indicating that a call was received via call forwarding, and in response to the message, transmit an instruction to the intended recipient to deactivate the call forwarding if the call is verified as legitimate.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 8, 2018
    Applicant: PINDROP SECURITY, INC.
    Inventors: Payas GUPTA, David DEWEY
  • Publication number: 20180041823
    Abstract: Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
    Type: Application
    Filed: May 19, 2017
    Publication date: February 8, 2018
    Applicant: PINDROP SECURITY, INC.
    Inventors: Nick GAUBITCH, Scott STRONG, John CORNWELL, Hassan KINGRAVI, David DEWEY
  • Patent number: 9883040
    Abstract: Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: January 30, 2018
    Assignee: PINDROP SECURITY, INC.
    Inventors: Scott Strong, Kailash Patil, David Dewey, Raj Bandyopadhyay, Telvis Calhoun, Vijay Balasubramaniyan
  • Publication number: 20170189233
    Abstract: An ophthalmic measurement and laser surgery system includes: a laser source; a corneal topography subsystem; an axis determining subsystem; a ranging subsystem comprising an Optical Coherence Tomographer (OCT); and a refractive index determining subsystem. All of the subsystems are under the operative control of a controller. The controller is configure to: operate the corneal topography subsystem to obtain corneal surface information; operate the axis determining subsystem to identify one or more ophthalmic axes of the eye; operate the OCT to sequentially scan the eye in a plurality of OCT scan patterns, the plurality of scan patterns configured to determine an axial length of the eye; operate the refractive index determining subsystem so to determine an index of refraction of one or more ophthalmic tissues, wherein at least one of the corneal surface information, ophthalmic axis information, and axial length is modified based on the determined index of refraction.
    Type: Application
    Filed: September 19, 2016
    Publication date: July 6, 2017
    Inventors: David A. Dewey, Javier G. Gonzalez, Georg Schuele, David D. Scott
  • Publication number: 20170112663
    Abstract: A laser eye surgery system includes a computer which scans a focused laser beam in a trajectory over a reticle or target and determines beam quality via laser light reflected from the target. The target may have a grid pattern of lines, with the diameter of the focused laser beam determined based on a time interval for the scanned beam to move onto a line of the grid pattern. Methods for measuring beam quality in a laser eye surgery system provide a direct, quantitative quality measurement of the focused laser beam, and may be performed quickly and automatically. Using scanning mirror position information together with signals resulting from laser light reflected from the target, the laser eye surgery system may also be calibrated.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 27, 2017
    Inventors: Noah Bareket, David A. Dewey, Michael J. Simoneau
  • Publication number: 20170111515
    Abstract: Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Applicant: PINDROP SECURITY, INC.
    Inventors: Raj BANDYOPADHYAY, Kailash PATIL, David DEWEY, Scott STRONG, Telvis CALHOUN, Vijay BALASUBRAMANIYAN
  • Publication number: 20170111506
    Abstract: Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Applicant: PINDROP SECURITY, INC.
    Inventors: Scott STRONG, Kailash PATIL, David DEWEY, Raj BANDYOPADHYAY, Telvis CALHOUN, Vijay BALASUBRAMANIYAN
  • Publication number: 20160250068
    Abstract: A method of reversibly separating an imaging assembly from an optical path in a laser surgical system includes generating an electromagnetic beam, propagating the electromagnetic beam from the beam source to a scanner along an optical path, the optical path comprising a first optical element that attenuates the electromagnetic beam, reversibly inserting a confocal bypass assembly into the optical path, diverting the electromagnetic beam along a diversion optical path around the first optical element, wherein the confocal bypass assembly automatically exits the optical path when a power loss occurs to one or more components of the system.
    Type: Application
    Filed: May 6, 2016
    Publication date: September 1, 2016
    Inventors: David A. Dewey, Georg Schuele, Noah Bareket, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Publication number: 20160235588
    Abstract: A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: John S. Hart, David A. Dewey, Georg Schuele, Phillip H. Gooding, Christine J. Beltran, Javier G. Gonzalez, Katrina B. Sheehy, Jeffrey A. Golda, Raymond Woo, Madeleine C. O'Meara, Noah Bareket, Thomas Z. Teisseyre, Bruce Woodley
  • Publication number: 20160106581
    Abstract: A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 21, 2016
    Inventors: Javier G. Gonzalez, David A. Dewey, Noah Bareket, Michael A. Campos, Yu-tai Ray Chen, David D. Scott
  • Publication number: 20160095752
    Abstract: A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 7, 2016
    Inventors: Rajeshwari Srinivasan, Jeffrey A. Golda, Javier G. Gonzalez, David D. Scott, David A. Dewey, Noah Bareket, Georg Schuele
  • Publication number: 20150335477
    Abstract: A system for ophthalmic surgery includes a laser source configured to deliver an ultraviolet laser beam comprising laser pulses having a wavelength between 320 nm and 370 nm to photodecompose one or more intraocular targets within the eye with chromophore absorbance. The pulse energy, the pulse duration, and the focal spot are such that an irradiance at the focal spot is sufficient to photodecompose the one or more intraocular targets without exceeding a threshold of formation of a plasma and an associated cavitation event. An optical system operatively coupled to the laser source and configured to focus the ultraviolet laser beam to a focal spot and direct the focal spot in a pattern into the one or more intraocular targets. The optical system focuses the laser beam at a numerical aperture that provides for the focal spot to be scanned over a scan range of 6 mm to 10 mm.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Applicant: OPTIMEDICA CORPORATION
    Inventors: Georg Schuele, Dan Andersen, David Dewey
  • Publication number: 20150272782
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: December 19, 2014
    Publication date: October 1, 2015
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Publication number: 20150018674
    Abstract: Methods and apparatus are configures to measure an eye without contacting the eye with a patient interface, and these measurements are used to determine alignment and placement of the incisions when the patient interface contacts the eye. The pre-contact locations of one or more structures of the eye can be used to determine corresponding post-contact locations of the one or more optical structures of the eye when the patient interface has contacted the eye, such that the laser incisions are placed at locations that promote normal vision of the eye. The incisions are positioned in relation to the pre-contact optical structures of the eye, such as an astigmatic treatment axis, nodal points of the eye, and visual axis of the eye.
    Type: Application
    Filed: April 18, 2014
    Publication date: January 15, 2015
    Inventors: David D. Scott, Javier Gonzalez, David Dewey, Noah Bareket, Georg Schuele