Patents by Inventor David A. Higgen

David A. Higgen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050144300
    Abstract: A host CPU runs a network protocol processing stack that provides instructions not only to process network messages but also to allocate processing of certain network messages to a specialized network communication device, offloading some of the most time consuming protocol processing from the host CPU to the network communication device. By allocating common and time consuming network processes to the device, while retaining the ability to handle less time intensive and more varied processing on the host stack, the network communication device can be relatively simple and cost effective. The host CPU, operating according to instructions from the stack, and the network communication device together determine whether and to what extent a given message is processed by the host CPU or by the network communication device.
    Type: Application
    Filed: October 29, 2004
    Publication date: June 30, 2005
    Inventors: Peter Craft, Clive Philbrick, Laurence Boucher, David Higgen
  • Publication number: 20050071490
    Abstract: A host CPU runs a network protocol processing stack that provides instructions not only to process network messages but also to allocate processing of certain network messages to a specialized network communication device, offloading some of the most time consuming protocol processing from the host CPU to the network communication device. By allocating common and time consuming network processes to the device, while retaining the ability to handle less time intensive and more varied processing on the host stack, the network communication device can be relatively simple and cost effective. The host CPU, operating according to instructions from the stack, and the network communication device together determine whether and to what extent a given message is processed by the host CPU or by the network communication device.
    Type: Application
    Filed: October 29, 2004
    Publication date: March 31, 2005
    Inventors: Peter Craft, Clive Philbrick, Laurence Boucher, David Higgen
  • Publication number: 20040240435
    Abstract: A Network Interface device (NI device) coupled to a host computer receives a multi-packet message from a network (for example, the Internet) and DMAs the data portions of the various packets directly into a destination in application memory on the host computer. The address of the destination is determined by supplying a first part of the first packet to an application program such that the application program returns the address of the destination. The address is supplied by the host computer to the NI device so that the NI device can DMA the data portions of the various packets directly into the destination. In some embodiments the NI device is an expansion card added to the host computer, whereas in other embodiments the NI device is a part of the host computer.
    Type: Application
    Filed: June 29, 2004
    Publication date: December 2, 2004
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040158640
    Abstract: A system and method for network communication, comprising a device coupled between a computer and a network to receive from the computer a Transport Control Protocol (TCP) connection, the device receiving from the network at least one packet associated with the TCP connection and processing a TCP header for the at least one packet, the computer having a memory storing instructions to pass the TCP connection to the device in first and second commands, the first command signaling an intent to transfer of the TCP connection, the second command responsive to an indication from the device that the device is prepared to receive the TCP connection.
    Type: Application
    Filed: April 30, 2003
    Publication date: August 12, 2004
    Inventors: Clive M. Philbrick, Peter K. Craft, David A. Higgen
  • Patent number: 6757746
    Abstract: A Network Interface device (NI device) coupled to a host computer receives a multi-packet message from a network (for example, the Internet) and DMAs the data portions of the various packets directly into a destination in application memory on the host computer. The address of the destination is determined by supplying a first part of the first packet to an application program such that the application program returns the address of the destination. The address is supplied by the host computer to the NI device so that the NI device can DMA the data portions of the various packets directly into the destination. In some embodiments the NI device is an expansion card added to the host computer, whereas in other embodiments the NI device is a part of the host computer.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: June 29, 2004
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040117509
    Abstract: A host CPU runs a network protocol processing stack that provides instructions not only to process network messages but also to allocate processing of certain network messages to a specialized network communication device, offloading some of the most time consuming protocol processing from the host CPU to the network communication device. By allocating common and time consuming network processes to the device, while retaining the ability to handle less time intensive and more varied processing on the host stack, the network communication device can be relatively simple and cost effective. The host CPU, operating according to instructions from the stack, and the network communication device together determine whether and to what extent a given message is processed by the host CPU or by the network communication device.
    Type: Application
    Filed: November 12, 2003
    Publication date: June 17, 2004
    Applicant: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, David A. Higgen
  • Publication number: 20040111535
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The CPD provides a fast-path that avoids protocol processing for most large multipacket messages, greatly accelerating data communication. The CPD also assists the host CPU for those message packets that are chosen for processing by host software layers. A context for a message is defined that allows DMA controllers of the CPD to move data, free of headers, directly to or from a destination or source in the host. The context can be stored as a communication control block (CCB) that is controlled by either the CPD or by the host CPU. The CPD contains specialized hardware circuits that process media access control, network and transport layer headers of a packet received from the network, saving the host CPU from that processing for fast-path messages.
    Type: Application
    Filed: November 28, 2003
    Publication date: June 10, 2004
    Inventors: Laurence B. Boucher, Clive M. Philbrick, Daryl D. Starr, Stephen E.J. Blightman, Peter K. Craft, David A. Higgen
  • Publication number: 20040100952
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: October 3, 2003
    Publication date: May 27, 2004
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040078480
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: October 18, 2002
    Publication date: April 22, 2004
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040073703
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 15, 2004
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040062246
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: June 19, 2003
    Publication date: April 1, 2004
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040064589
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040064578
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Publication number: 20040054813
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The INIC provides a fast-path that avoids protocol processing for most large multi-packet messages, greatly accelerating data communication. The INIC also assists the host for those message packets that are chosen for processing by host software layers. A communication control block for a message is defined that allows DMA controllers of the INIC to move data, free of headers, directly to or from a destination or source in the host. The context is stored in the INIC as a communication control block (CCB) that can be passed back to the host for message processing by the host. The INIC contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: September 17, 2002
    Publication date: March 18, 2004
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 6697868
    Abstract: A host CPU runs a network protocol processing stack that provides instructions not only to process network messages but also to allocate processing of certain network messages to a specialized network communication device, offloading some of the most time consuming protocol processing from the host CPU to the network communication device. By allocating common and time consuming network processes to the device, while retaining the ability to handle less time intensive and more varied processing on the host stack, the network communication device can be relatively simple and cost effective. The host CPU, operating according to instructions from the stack, and the network communication device together determine whether and to what extent a given message is processed by the host CPU or by the network communication device.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: February 24, 2004
    Assignee: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, David A. Higgen
  • Publication number: 20040030745
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: May 14, 2003
    Publication date: February 12, 2004
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 6687758
    Abstract: At least one intelligent network interface card (INIC) is coupled to a host computer to offload protocol processing for multiple network connections, reducing the protocol processing of the host. Plural network connections can maintain, via plural INIC ports and a port aggregation switch, an aggregate connection with a network node, increasing bandwidth and reliability for that aggregate connection. Mechanisms are provided for managing this aggregate connection, including determining which port to employ for each individual network connection, and migrating control of an individual network connection from a first INIC to a second INIC.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: February 3, 2004
    Assignee: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, Daryl D. Starr, Stephen E. J. Blightman, David A. Higgen
  • Publication number: 20040003126
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Application
    Filed: November 7, 2001
    Publication date: January 1, 2004
    Applicant: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 6658480
    Abstract: A system for protocol processing in a computer network has an intelligent network interface card (INIC) or communication processing device (CPD) associated with a host computer. The CPD provides a fast-path that avoids protocol processing for most large multipacket messages, greatly accelerating data communication. The CPD also assists the host CPU for those message packets that are chosen for processing by host software layers. A context for a message is defined that allows DMA controllers of the CPD to move data, free of headers, directly to or from a destination or source in the host. The context can be stored as a communication control block (CCB) that is controlled by either the CPD or by the host CPU. The CPD contains specialized hardware circuits that process media access control, network and transport layer headers of a packet received from the network, saving the host CPU from that processing for fast-path messages.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: December 2, 2003
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Clive M. Philbrick, Daryl D. Starr, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen
  • Publication number: 20030167346
    Abstract: At least one intelligent network interface card (INIC) is coupled to a host computer to offload protocol processing for multiple network connections, reducing the protocol processing of the host. Plural network connections can maintain, via plural INIC ports and a port aggregation switch, an aggregate connection with a network node, increasing bandwidth and reliability for that aggregate connection. Mechanisms are provided for managing this aggregate connection, including determining which port to employ for each individual network connection, and migrating control of an individual network connection from a first INIC to a second INIC.
    Type: Application
    Filed: March 7, 2001
    Publication date: September 4, 2003
    Applicant: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, Daryl D. Starr, Stephen E.J. Blightman, David A. Higgen