Patents by Inventor David A. Thompson

David A. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230208345
    Abstract: Example electric solar canopy systems and methods are described. In one implementation, a foundation is positioned on a surface. A table is configured to secure multiple solar panels. A lifting mechanism is coupled to the foundation and the table, where the lifting mechanism is configured to move the table between a lowered position and a raised position.
    Type: Application
    Filed: August 12, 2022
    Publication date: June 29, 2023
    Inventors: David Thompson McCalmont, Andrew Ontak Wong, Jacob Michael Rendina, Jonathan Scott McCalmont, Aaron William McCalmont, Joshua R. Mehrer
  • Publication number: 20230184119
    Abstract: Protected aerospace components are provided and contain a nanolaminate film stack disposed on a surface of an aerospace component, where the nanolaminate film stack comprises alternating layers of a chromium-containing layer and a second deposited layer. The chromium-containing layer can include metallic chromium, chromium oxide, chromium nitride, chromium carbide, chromium silicide, or any combination thereof.
    Type: Application
    Filed: February 7, 2023
    Publication date: June 15, 2023
    Inventors: Thomas KNISLEY, Mark SALY, David Alexander BRITZ, David THOMPSON
  • Patent number: 11643721
    Abstract: Processing methods for forming iridium-containing films at low temperatures are described. The methods comprise exposing a substrate to iridium hexafluoride and a reactant to form iridium metal or iridium silicide films. Methods for enhancing selectivity and tuning the silicon content of some films are also described.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: May 9, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Hua Chung, Schubert Chu, Mei Chang, Jeffrey W. Anthis, David Thompson
  • Patent number: 11641319
    Abstract: Respective network metrics sets corresponding to one or more data sources are examined at a network health manager. Network health states corresponding to one or more endpoint pair categories are determined based on the analysis of the network metric sets. An indication of the network health state of a particular endpoint pair category is stored.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: May 2, 2023
    Assignee: Amazon Technologies, Inc.
    Inventors: Kenneth Grey Richards, Schuyler David Thompson, Adam Siefker, Kevin Christopher Miller, Meenakshi Rameshkumar
  • Publication number: 20230132200
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups selected from alkene, alkyne, ketone, hydroxyl, aldehyde, or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
  • Publication number: 20230126055
    Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups, at least one functional group selected from amino groups, hydroxyl groups, ether linkages or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
  • Patent number: 11603767
    Abstract: Methods for depositing protective coatings on aerospace components are provided and include sequentially exposing the aerospace component to a chromium precursor and a reactant to form a chromium-containing layer on a surface of the aerospace component by an atomic layer deposition process. The chromium-containing layer contains metallic chromium, chromium oxide, chromium nitride, chromium carbide, chromium silicide, or any combination thereof.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: March 14, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Thomas Knisley, Mark Saly, David Alexander Britz, David Thompson
  • Patent number: 11584815
    Abstract: The invention relates to an efficient process for the preparation and isolation of rubber particles formed in aqueous media and highly pure rubbers obtained thereby. The invention further relates to copolymer products comprising the same or derived therefrom.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: February 21, 2023
    Assignee: ARLANXEO SINGAPORE PTE. LTD.
    Inventor: David Thompson
  • Publication number: 20230025937
    Abstract: Methods of depositing platinum group metal films of high purity, low resistivity, and good conformality are described. A platinum group metal film is formed in the absence of an oxidant. The platinum group metal film is selectively deposited on a conductive substrate at a temperature less than 200° C. by using an organic platinum group metal precursor.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Yixiong Yang, Wei V. Tang, Seshadri Ganguli, Sang Ho Yu, Feng Q. Liu, Jeffrey W. Anthis, David Thompson, Jacqueline S. Wrench, Naomi Yoshida
  • Patent number: 11560804
    Abstract: Methods for forming protective coatings on aerospace components are provided. In one or more embodiments, the method includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a first deposition process (e.g., CVD or ALD), and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second deposition process. The first deposited layer and the second deposited layer have different compositions from each other. The method also includes repeating the first deposition process and the second deposition process to form a nanolaminate film stack having from 2 pairs to about 1,000 pairs of the first deposited layer and the second deposited layer consecutively deposited on each other.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: January 24, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Publication number: 20230010568
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a method of processing a substrate comprises a) removing oxide from a metal layer disposed in a dielectric layer on the substrate disposed in a processing chamber, b) selectively depositing a self-assembled monolayer (SAM) on the metal layer using atomic layer deposition, c) depositing a precursor while supplying water to form one of an aluminum oxide (AlO) layer on the dielectric layer or a low-k dielectric layer on the dielectric layer, d) supplying at least one of hydrogen (H2) or ammonia (NH3) to remove the self-assembled monolayer (SAM), and e) depositing one of a silicon oxycarbonitride (SiOCN) layer or a silicon nitride (SiN) layer atop the metal layer and the one of the aluminum oxide (AlO) layer on the dielectric layer or the low-k dielectric layer on the dielectric layer.
    Type: Application
    Filed: April 13, 2022
    Publication date: January 12, 2023
    Inventors: Suketu PARIKH, Mihaela A. BALSEANU, Bhaskar Jyoti BHUYAN, Ning LI, Mark Joseph SALY, Aaron Michael DANGERFIELD, David THOMPSON, Abhijit B. MALLICK
  • Publication number: 20230002888
    Abstract: Methods of depositing high purity metal films are discussed. Some embodiments utilize a method comprising exposing a substrate surface to an organometallic precursor comprising a metal selected from the group consisting of molybdenum (Mo), tungsten (W), osmium (Os), rhenium (Re), iridium (Ir), nickel (Ni) and ruthenium (Ru) and an iodine-containing reactant comprising a species having a formula RIx, where R is one or more of a C0-C10 alkyl, cycloalkyl, alkenyl, or alkynyl group and x is in a range of 1 to 4 to form a carbon-less iodine-containing metal film; and exposing the carbon-less iodine-containing metal film to a reductant to form a metal film. Some embodiments deposit a metal film with greater than or equal to 90% metal species on an atomic basis.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Mark Saly, David Thompson
  • Publication number: 20220410445
    Abstract: A mold for use in the production of a ballistic article from a composite laminate stacked material wherein the mold has a sliding sealing section that nests with a outer perimeter section and base portion so as to shield the sides of the composite laminate stacked material from applied isostatic pressure applied when in an autoclave. By shielding the sides of the composite laminate stacked material excess resin matrix material can be forced from the composite laminate stacked material to provide a uniform composite article with reduced weight and reduced thickness.
    Type: Application
    Filed: December 18, 2018
    Publication date: December 29, 2022
    Applicant: XTEK LTD
    Inventor: David Thompson
  • Publication number: 20220383259
    Abstract: Disclosed are example embodiments of a methods and systems for analyzing and determining impact (or lack thereof) on any selected group or groups of employees of selected pay policies. An example includes a computer-implemented method for analyzing and determining impact on selected group of employees of selected pay policies. The method including receiving a first pay data for the selected group of employees. The method also including determining one or more controls for the selected group of employees. Additionally, the method including calculating an equitable pay range for the selected group of employees based on the one or more controls. The method also including receiving a user input, wherein the user input requests a second pay data relates to an employee, and is based on a selected control. The method also including calculating the second pay data; and sending the second pay data for display.
    Type: Application
    Filed: May 26, 2022
    Publication date: December 1, 2022
    Inventors: Maria Colacurcio, Robert Porcarelli, Robert Paul Platzer, Kathlyn Bardaro, Zev Eigen, Olya Evanitsky, Courtney Alexandra Ellert, Melania Davila, David Rubin, Rebecca Scully, Clinton Cutchins, Vanessa Mari Lynskey, Allison Hamilton, Robert Christopher Martin, Erika M. Johnson, Tyler E. Benjamin, Heather R. Kanipe, Adam Joshua Reed, Heather L. Hendy, Brendon Alan Kay, Trent Vigar, Taivon David Thompson, Samuel Andres Roldan, Lena I. Ripple, Joshua B. Hanson, Olga Kuznetsova, John Dillon Lareau, Scott J. Wilkins, Michelle Elaine Ruch, Jessica Sarmiento Madamba, Jia Yin
  • Patent number: 11515155
    Abstract: Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: November 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chang Ke, Michael S. Jackson, Liqi Wu, Lei Zhou, Shuyi Zhang, David Thompson, Paul F. Ma, Biao Liu, Cheng Pan
  • Patent number: 11515149
    Abstract: Methods for seam-less gapfill comprising forming a flowable film by exposing a substrate surface to a silicon-containing precursor and a co-reactant are described. The silicon-containing precursor has at least one akenyl or alkynyl group. The flowable film can be cured by any suitable curing process to form a seam-less gapfill.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: November 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lakmal C. Kalutarage, Mark Saly, David Thompson, Abhijit Basu Mallick, Tejasvi Ashok, Pramit Manna
  • Patent number: 11488830
    Abstract: Methods of depositing platinum group metal films of high purity, low resistivity, and good conformality are described. A platinum group metal film is formed in the absence of an oxidant. The platinum group metal film is selectively deposited on a conductive substrate at a temperature less than 200° C. by using an organic platinum group metal precursor.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: November 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Yixiong Yang, Wei V. Tang, Seshadri Ganguli, Sang Ho Yu, Feng Q. Liu, Jeffrey W. Anthis, David Thompson, Jacqueline S. Wrench, Naomi Yoshida
  • Patent number: 11460463
    Abstract: A method and apparatus for calculating the derived cetane number of a liquid hydrocarbon sample is disclosed. The method comprises combusting (19) the sample in a constant volume combustion chamber (45). The method comprises obtaining (23) a pressure versus time combustion profile (69) of the sample wherein the profile comprises a first region (81) and a second region (83), the first region (81) including the start of combustion, and the second region (83) relating to a later time than the first region. The method comprises selecting a single data point from the second region (83) of the combustion profile (69), said data point representing a combustion delay (CD) of the combustion profile; and calculating a derived cetane number for the sample using the time value associated with said single data point.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 4, 2022
    Inventors: Kevin Fogarty, David Thompson, Noel Beauchamp
  • Publication number: 20220304898
    Abstract: Methods and apparatus for accessing and monitoring the gastrointestinal tract are described herein. One variation of a feeding tube system may generally comprise a gastric access device having a length, a controller in communication with the gastric access device, and one or more impedance or conductivity sensors positioned along the length and one or more temperature sensors positioned along the length. The controller may be configured to receive a first signal associated with the impedance or conductivity sensors and a second signal associated with respiration and determine whether a placement of the gastric access device is within a stomach of the subject.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 29, 2022
    Applicant: Gravitas Medical, Inc.
    Inventors: Saheel SUTARIA, Daniel R. BURNETT, Michael BAYCURA, David THOMPSON, Arthur SPIVY, Elliott BENNETT-GUERRERO, Sam RADOCHONSKI, Nicholas MERCER
  • Publication number: 20220302761
    Abstract: Disclosed herein are an electronic gaming system with a wireless charger for providing wireless charging of a user's wirelessly chargeable device(s). The electronic gaming system may include a wireless charging status determination system that may measure an aspect of power supplied to the wireless charger by the electronic gaming system and may determine a charging status of the wireless charger from such measurements, thereby allowing determination of charging status of the wireless charger (and, correspondingly, a determination of charge status for a wirelessly chargeable device being charged by wireless charger) by the wireless charging status determination system without requiring any data communication between itself and the wireless charger and/or the wirelessly chargeable device.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Shane Perrow, Myron Dennison, David Thompson