Patents by Inventor David B. Thompson

David B. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905623
    Abstract: Some aspects of the present disclosure provide methods for evolving recombinases to recognize target sequences that differ from the canonical recognition sequences. Some aspects of this disclosure provide evolved recombinases, e.g., recombinases that bind and recombine naturally-occurring target sequences, such as, e.g., target sequences within the human Rosa26 locus. Methods for using such recombinases for genetically engineering nucleic acid molecules in vitro and in vivo are also provided. Some aspects of this disclosure also provide libraries and screening methods for assessing the target site preferences of recombinases, as well as methods for selecting recombinases that bind and recombine a non-canonical target sequence with high specificity.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: February 20, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, Jeffrey L. Bessen
  • Publication number: 20230056852
    Abstract: Some aspects of this disclosure provide compositions, methods, and kits for improving the specificity of RNA-programmable endonucleases, such as Cas9. Also provided are variants of Cas9, e.g., Cas9 dimers and fusion proteins, engineered to have improved specificity for cleaving nucleic acid targets. Also provided are compositions, methods, and kits for site-specific nucleic acid modification using Cas9 fusion proteins (e.g., nuclease-inactivated Cas9 fused to a nuclease catalytic domain or a recombinase catalytic domain). Such Cas9 variants are useful in clinical and research settings involving site-specific modification of DNA, for example, genomic modifications.
    Type: Application
    Filed: September 30, 2022
    Publication date: February 23, 2023
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, John Paul Guilinger, David B. Thompson
  • Publication number: 20220281941
    Abstract: Compositions and provided to induce cells of the inner ear to renter the cell cycle and to proliferate. In particular, hair cells are induced to proliferate by administration of a composition which activates the Myc and Notch. Supporting cells are induced to transdifferentiate to hair cells by inhibition of Myc and Notch activity or the activation of Atoh1. Methods of treatment include the intracellular delivery of these molecules to a specific therapeutic target.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Zheng-Yi Chen, David R. Liu, Margie Li, David B. Thompson, John Zuris
  • Publication number: 20220226503
    Abstract: Compositions are described for direct protein delivery into multiple cell types in the mammalian inner ear. The compositions are used to deliver protein(s) (such as gene editing factors) editing of genetic mutations associated with deafness or associated disorders thereof. The delivery of genome editing proteins for gene editing and correction of genetic mutations protect or restore hearing from genetic deafness. Methods of treatment include the intracellular delivery of these molecules to a specific therapeutic target.
    Type: Application
    Filed: June 17, 2021
    Publication date: July 21, 2022
    Inventors: Zheng-Yi Chen, David R. Liu, Margie Li, David B. Thompson, John Zuris
  • Patent number: 11370823
    Abstract: Compositions and provided to induce cells of the inner ear to renter the cell cycle and to proliferate. In particular, hair cells are induced to proliferate by administration of a composition which activates the Myc and Notch. Supporting cells are induced to transdifferentiate to hair cells by inhibition of Myc and Notch activity or the activation of Atoh1. Methods of treatment include the intracellular delivery of these molecules to a specific therapeutic target.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: June 28, 2022
    Assignees: Massachusetts Eye and Ear Infirmary, President and Fellows of Harvard College
    Inventors: Zheng-Yi Chen, David R. Liu, Margie Li, David B. Thompson, John Zuris
  • Publication number: 20220073887
    Abstract: Some aspects of the present disclosure provide methods for evolving recombinases to recognize target sequences that differ from the canonical recognition sequences. Some aspects of this disclosure provide evolved recombinases, e.g., recombinases that bind and recombine naturally-occurring target sequences, such as, e.g., target sequences within the human Rosa26 locus. Methods for using such recombinases for genetically engineering nucleic acid molecules in vitro and in vivo are also provided. Some aspects of this disclosure also provide libraries and screening methods for assessing the target site preferences of recombinases, as well as methods for selecting recombinases that bind and recombine a non-canonical target sequence with high specificity.
    Type: Application
    Filed: August 10, 2021
    Publication date: March 10, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, Jeffrey L. Bessen
  • Publication number: 20210315994
    Abstract: Compositions, methods, strategies, kits, and systems for the delivery of negatively charged proteins, protein complexes, and fusion proteins, using cationic polymers or lipids are provided. Delivery of proteins into cells can be effected in vivo, ex vivo, or in vitro. Proteins that can be delivered using the compositions, methods, strategies, kits, and systems provided herein include, without limitation, enzymes, transcription factors, genome editing proteins, Cas9 proteins, TALEs, TALENs, nucleases, binding proteins (e.g., ligands, receptors, antibodies, antibody fragments; nucleic acid binding proteins, etc.), structural proteins, and therapeutic proteins (e.g., tumor suppressor proteins, therapeutic enzymes, growth factors, growth factor receptors, transcription factors, proteases, etc.), as well as variants and fusions of such proteins.
    Type: Application
    Filed: December 22, 2020
    Publication date: October 14, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, John Anthony Zuris
  • Patent number: 11104967
    Abstract: Some aspects of the present disclosure provide methods for evolving recombinases to recognize target sequences that differ from the canonical recognition sequences. Some aspects of this disclosure provide evolved recombinases, e.g., recombinases that bind and recombine naturally-occurring target sequences, such as, e.g., target sequences within the human Rosa26 locus. Methods for using such recombinases for genetically engineering nucleic acid molecules in vitro and in vivo are also provided. Some aspects of this disclosure also provide libraries and screening methods for assessing the target site preferences of recombinases, as well as methods for selecting recombinases that bind and recombine a non-canonical target sequence with high specificity.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 31, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, Jeffrey L. Bessen
  • Patent number: 11071790
    Abstract: Compositions are described for direct protein delivery into multiple cell types in the mammalian inner ear. The compositions are used to deliver protein(s) (such as gene editing factors) editing of genetic mutations associated with deafness or associated disorders thereof. The delivery of genome editing proteins for gene editing and correction of genetic mutations protect or restore hearing from genetic deafness. Methods of treatment include the intracellular delivery of these molecules to a specific therapeutic target.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: July 27, 2021
    Assignees: Massachusetts Eye and Ear Infirmary, President and Fellows of Harvard College
    Inventors: Zheng-Yi Chen, David R. Liu, Margie Li, David B. Thompson, John Zuris
  • Publication number: 20210214698
    Abstract: Some aspects of this disclosure provide compositions, methods, and kits for improving the specificity of RNA-programmable endonucleases, such as Cas9. Also provided are variants of Cas9, e.g., Cas9 dimers and fusion proteins, engineered to have improved specificity for cleaving nucleic acid targets. Also provided are compositions, methods, and kits for site-specific nucleic acid modification using Cas9 fusion proteins (e.g., nuclease-inactivated Cas9 fused to a nuclease catalytic domain or a recombinase catalytic domain). Such Cas9 variants are useful in clinical and research settings involving site-specific modification of DNA, for example, genomic modifications.
    Type: Application
    Filed: November 24, 2020
    Publication date: July 15, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, John Paul Guilinger, David B. Thompson
  • Patent number: 10912833
    Abstract: Compositions, methods, strategies, kits, and systems for the delivery of negatively charged proteins, protein complexes, and fusion proteins, using cationic polymers or lipids are provided. Delivery of proteins into cells can be effected in vivo, ex vivo, or in vitro. Proteins that can be delivered using the compositions, methods, strategies, kits, and systems provided herein include, without limitation, enzymes, transcription factors, genome editing proteins, Cas9 proteins, TALEs, TALENs, nucleases, binding proteins (e.g., ligands, receptors, antibodies, antibody fragments; nucleic acid binding proteins, etc.), structural proteins, and therapeutic proteins (e.g., tumor suppressor proteins, therapeutic enzymes, growth factors, growth factor receptors, transcription factors, proteases, etc.), as well as variants and fusions of such proteins.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: February 9, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, John Anthony Zuris
  • Patent number: 10858639
    Abstract: Some aspects of this disclosure provide compositions, methods, and kits for improving the specificity of RNA-programmable endonucleases, such as Cas9. Also provided are variants of Cas9, e.g., Cas9 dimers and fusion proteins, engineered to have improved specificity for cleaving nucleic acid targets. Also provided are compositions, methods, and kits for site-specific nucleic acid modification using Cas9 fusion proteins (e.g., nuclease-inactivated Cas9 fused to a nuclease catalytic domain or a recombinase catalytic domain). Such Cas9 variants are useful in clinical and research settings involving site-specific modification of DNA, for example, genomic modifications.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: December 8, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, John Paul Guilinger, David B. Thompson
  • Publication number: 20200323984
    Abstract: Compositions, methods, strategies, kits, and systems for the supercharged protein-mediated delivery of functional effector proteins into cells in vivo, ex vivo, or in vitro are provided. Compositions, methods, strategies, kits, and systems for delivery of functional effector proteins using cationic lipids and cationic polymers are also provided. Functional effector proteins include, without limitation, transcriptional modulators (e.g., repressors or activators), recombinases, nucleases (e.g., RNA-programmable nucleases, such as Cas9 proteins; TALE nuclease, and zinc finger nucleases), deaminases, and other gene modifying/editing enzymes. Functional effector proteins include TALE effector proteins, e.g., TALE transcriptional activators and repressors, as well as TALE nucleases.
    Type: Application
    Filed: April 28, 2020
    Publication date: October 15, 2020
    Applicant: President and Fellows of Harvard College
    Inventors: Daivd R. Liu, John Anthony Zuris, David B. Thompson
  • Patent number: 10682410
    Abstract: Compositions, methods, strategies, kits, and systems for the supercharged protein-mediated delivery of functional effector proteins into cells in vivo, ex vivo, or in vitro are provided. Compositions, methods, strategies, kits, and systems for delivery of functional effector proteins using cationic lipids and cationic polymers are also provided. Functional effector proteins include, without limitation, transcriptional modulators (e.g., repressors or activators), recombinases, nucleases (e.g., RNA-programmable nucleases, such as Cas9 proteins; TALE nuclease, and zinc finger nucleases), deaminases, and other gene modifying/editing enzymes. Functional effector proteins include TALE effector proteins, e.g., TALE transcriptional activators and repressors, as well as TALE nucleases.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: June 16, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, John Anthony Zuris, David B. Thompson
  • Publication number: 20200071722
    Abstract: Some aspects of the present disclosure provide methods for evolving recombinases to recognize target sequences that differ from the canonical recognition sequences. Some aspects of this disclosure provide evolved recombinases, e.g., recombinases that bind and recombine naturally-occurring target sequences, such as, e.g., target sequences within the human Rosa26 locus. Methods for using such recombinases for genetically engineering nucleic acid molecules in vitro and in vivo are also provided. Some aspects of this disclosure also provide libraries and screening methods for assessing the target site preferences of recombinases, as well as methods for selecting recombinases that bind and recombine a non-canonical target sequence with high specificity.
    Type: Application
    Filed: July 24, 2019
    Publication date: March 5, 2020
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, Jeffrey L. Bessen
  • Patent number: 10392674
    Abstract: Some aspects of the present disclosure provide methods for evolving recombinases to recognize target sequences that differ from the canonical recognition sequences. Some aspects of this disclosure provide evolved recombinases, e.g., recombinases that bind and recombine naturally-occurring target sequences, such as, e.g., target sequences within the human Rosa26 locus. Methods for using such recombinases for genetically engineering nucleic acid molecules in vitro and in vivo are also provided. Some aspects of this disclosure also provide libraries and screening methods for assessing the target site preferences of recombinases, as well as methods for selecting recombinases that bind and recombine a non-canonical target sequence with high specificity.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 27, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, Jeffrey L. Bessen
  • Patent number: 10258697
    Abstract: Compositions are described for direct protein delivery into multiple cell types in the mammalian inner ear. The compositions are used to deliver protein(s) (such as gene editing factors) editing of genetic mutations associated with deafness or associated disorders thereof. The delivery of genome editing proteins for gene editing and correction of genetic mutations protect or restore hearing from genetic deafness. Methods of treatment include the intracellular delivery of these molecules to a specific therapeutic target.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 16, 2019
    Assignee: Massachusetts Eye and Ear Infirmary
    Inventors: Zheng-Yi Chen, David Liu, John Anthony Zuris, David B. Thompson
  • Publication number: 20180312542
    Abstract: The inefficient delivery of proteins into mammalian cells remains a major barrier to realizing the therapeutic potential of many proteins. Previously, it has been demonstrated that superpositively charged proteins are efficiently endocytosed and can bring associated proteins and nucleic acids into cells. The vast majority of cargo delivered in this manner, however, remains in endosomes and does not reach the cytosol. The present invention provides endosomal escape peptides that enhance endosomal escape and cytosolic delivery of proteins and other agents of interest. In one aspect, described herein are novel fusion proteins comprising endosomal escape peptides fused to proteins and other agents of interest for delivery to a cell. Also provided herein are methods and compounds useful in preparing the fusion proteins, as well as pharmaceutical compositions and uses of the fusion proteins.
    Type: Application
    Filed: October 19, 2016
    Publication date: November 1, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Margie Li, David B. Thompson
  • Publication number: 20180236081
    Abstract: Compositions, methods, strategies, kits, and systems for the delivery of negatively charged proteins, protein complexes, and fusion proteins, using cationic polymers or lipids are provided. Delivery of proteins into cells can be effected in vivo, ex vivo, or in vitro. Proteins that can be delivered using the compositions, methods, strategies, kits, and systems provided herein include, without limitation, enzymes, transcription factors, genome editing proteins, Cas9 proteins, TALEs, TALENs, nucleases, binding proteins (e.g., ligands, receptors, antibodies, antibody fragments; nucleic acid binding proteins, etc.), structural proteins, and therapeutic proteins (e.g., tumor suppressor proteins, therapeutic enzymes, growth factors, growth factor receptors, transcription factors, proteases, etc.), as well as variants and fusions of such proteins.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 23, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, John Anthony Zuris
  • Patent number: 9999671
    Abstract: Compositions, methods, strategies, kits, and systems for the delivery of negatively charged proteins, protein complexes, and fusion proteins, using cationic polymers or lipids are provided. Delivery of proteins into cells can be effected in vivo, ex vivo, or in vitro. Proteins that can be delivered using the compositions, methods, strategies, kits, and systems provided herein include, without limitation, enzymes, transcription factors, genome editing proteins, Cas9 proteins, TALEs, TALENs, nucleases, binding proteins (e.g., ligands, receptors, antibodies, antibody fragments; nucleic acid binding proteins, etc.), structural proteins, and therapeutic proteins (e.g., tumor suppressor proteins, therapeutic enzymes, growth factors, growth factor receptors, transcription factors, proteases, etc.), as well as variants and fusions of such proteins.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: June 19, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, John Anthony Zuris