Patents by Inventor David C. Vacanti

David C. Vacanti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906617
    Abstract: A portable radar system that may leverage the processing power, input and/or display functionality in mobile computing devices. Some examples of mobile computing devices may include mobile phones, tablet computers, laptop computers and similar devices. The radar system of this disclosure may include a wired or wireless interface to communicate with the mobile computing device, or similar device that includes a display. The radar system may be configured with an open set of instructions for interacting with an application executing on the mobile computing device to accept control inputs as well as output signals that the application may interpret and display, such as target detection and tracking. The radar system may consume less power than other radar systems. The radar system of this disclosure may be used for a wide variety of applications by consumers, military, law enforcement and commercial use.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: February 20, 2024
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Jeffrey D. Radke
  • Publication number: 20230251368
    Abstract: The disclosure describes techniques to scan a radio frequency antenna beam along one or more axes. For example, for a wide transmit beam oriented such that the long axis is in azimuth, this disclosure describes techniques to scan the transmit beam in elevation, in the direction of a short axis of the transmit beam. The radar receive aperture may be synchronized with transmit beam to scan the radar receive aperture using RF beamforming such that the elevation scan of the field of view of the radar receive aperture follows the elevation scan of the transmit beam. The radar receiver circuitry may also down-convert the received radar signals to an intermediate frequency (IF). The radar receiver circuitry may digitally form monopulse receive beams at IF within the processing circuitry of the receiver electronics and digitally scan the monopulse receive beams along the long axis of the field of view.
    Type: Application
    Filed: February 4, 2022
    Publication date: August 10, 2023
    Inventors: Shawn Rogers, Marc M. Pos, Darren Goshi, David C. Vacanti
  • Patent number: 11698455
    Abstract: In some examples, a system includes a weather radar device configured to transmit radar signals, receive first reflected radar signals at a first time, and receive second reflected radar signals at a second time. In some examples, the system also includes processing circuitry configured to determine a first magnitude of reflectivity based on the first reflected radar signals and determine a second magnitude of reflectivity based on the second reflected radar signals. In some examples, the processing circuitry is also configured to determine a temporal variance in reflectivity magnitudes based on determining a difference in reflectivity between the first magnitude and the second magnitude. In some examples, the processing circuitry is further configured to determine a presence of ice crystals based on the first magnitude of reflectivity, the second magnitude of reflectivity, and the temporal variance in reflectivity magnitudes.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: July 11, 2023
    Assignee: Honeywell International Inc.
    Inventors: Pavel Badin, David C. Vacanti, Jan Lukas
  • Patent number: 11668817
    Abstract: A radar system to detect and track objects in three dimensions. The radar system including antennae, transmit, receive and processing electronics is all in a small, lightweight, low-cost, highly integrated package. The radar system uses a wide azimuth, narrow elevation radar pattern to detect objects and a Wi-Fi radio to communicate to one or more receiving and display units. One application may include mounting the radar system in an existing radome on an aircraft to detect and avoid objects during ground operations. Objects may include other moving aircraft, ground vehicles, buildings or other structures that may be in the area. The system may transmit information to both pilot and ground crew.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: June 6, 2023
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Nigel Wang
  • Patent number: 11506775
    Abstract: A radar apparatus with a transmission antenna array that outputs a high aspect ratio frequency modulation continuous wave (FMCW) transmission beam that illuminates a large field of regard in elevation and may be both electronically and mechanically scanned in azimuth. The weather radar apparatus includes a receive array and receive electronics that may receive the reflected return radar signals and digitally form a plurality of receive beams that may be used to determine characteristics of the area in the field of regard. The receive beams may be used to determine reflectivity of weather systems and provide a coherent weather picture. The weather radar apparatus may simultaneously process the receive signals into monopulse beams that may be used for accurate navigation as well as collision avoidance.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: November 22, 2022
    Assignee: Honeywell International Inc.
    Inventors: Keone J. Holt, David C. Vacanti, Marc M. Pos
  • Patent number: 11181616
    Abstract: In some examples, a radar system includes first direct digital synthesizer (DDS) circuitry and first phase-locked loop (PLL) circuitry configured to generate a first sinusoidal signal based on a first DDS signal generated by the first DDS circuitry. In some examples, the radar system further includes transmitter circuitry configured to generate a radar signal based on the first sinusoidal signal. In some examples, the radar system also includes one or more antennas configured to transmit the radar signal and receive a return signal based on the radar signal. In some examples, the radar system includes second DDS circuitry, second PLL circuitry configured to generate a second sinusoidal signal based on a second DDS signal generated by the second DDS circuitry, and receiver circuitry configured to process the return signal based on the second sinusoidal signal.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: November 23, 2021
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Marc M. Pos
  • Patent number: 11143756
    Abstract: A weather radar with a transmission antenna array that outputs a high aspect ratio FMCW transmission beam that illuminates an area in the field of regard in elevation and may be electronically scanned in azimuth. The weather radar includes a receive array and receive electronics that may receive the reflected return radar signals and electronically form a plurality of receive beams that may be used to determine characteristics of the area in the field of regard. The receive beams may be used to determine reflectivity of weather systems and provide a coherent weather picture. The weather radar may simultaneously process the receive signals into monopulse beams that may be used for accurate navigation as well as detection and tracking of objects, such as birds, aircraft, UAVs and the like.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: October 12, 2021
    Assignee: Honeywell International Inc.
    Inventor: David C. Vacanti
  • Publication number: 20210132220
    Abstract: In some examples, a system includes a weather radar device configured to transmit radar signals, receive first reflected radar signals at a first time, and receive second reflected radar signals at a second time. In some examples, the system also includes processing circuitry configured to determine a first magnitude of reflectivity based on the first reflected radar signals and determine a second magnitude of reflectivity based on the second reflected radar signals. In some examples, the processing circuitry is also configured to determine a temporal variance in reflectivity magnitudes based on determining a difference in reflectivity between the first magnitude and the second magnitude. In some examples, the processing circuitry is further configured to determine a presence of ice crystals based on the first magnitude of reflectivity, the second magnitude of reflectivity, and the temporal variance in reflectivity magnitudes.
    Type: Application
    Filed: December 21, 2020
    Publication date: May 6, 2021
    Inventors: Pavel Badin, David C. Vacanti, Jan Lukas
  • Publication number: 20210132219
    Abstract: A weather radar with a transmission antenna array that outputs a high aspect ratio FMCW transmission beam that illuminates an area in the field of regard in elevation and may be electronically scanned in azimuth. The weather radar includes a receive array and receive electronics that may receive the reflected return radar signals and electronically form a plurality of receive beams that may be used to determine characteristics of the area in the field of regard. The receive beams may be used to determine reflectivity of weather systems and provide a coherent weather picture. The weather radar may simultaneously process the receive signals into monopulse beams that may be used for accurate navigation as well as detection and tracking of objects, such as birds, aircraft, UAVs and the like.
    Type: Application
    Filed: August 25, 2020
    Publication date: May 6, 2021
    Inventor: David C. Vacanti
  • Patent number: 10989802
    Abstract: In some examples, a system is configured to be mounted on a vehicle, the system including one or more phased-array radar devices configured to transmit first radar signals, receive first returned radar signals, transmit second radar signals, and receive second returned radar signals. In some examples, the system also includes processing circuitry configured to detect an object based on the first returned radar signals and determine an estimated altitude of the vehicle above a ground surface based on the second returned radar signals.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 27, 2021
    Assignee: Honeywell International Inc.
    Inventors: Marc M. Pos, David C. Vacanti
  • Patent number: 10955549
    Abstract: In some examples, a system is configured for determining an estimated altitude of a melting layer, and the system includes a weather radar device configured to transmit radar signals and receive reflected radar signals. In some examples, the system also includes processing circuitry configured to determine the estimated altitude of the melting layer based on the reflected radar signals.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 23, 2021
    Assignee: Honeywell International Inc.
    Inventors: Jan Lukas, David C. Vacanti
  • Patent number: 10935693
    Abstract: In some examples, a processor is configured to predict the presence of ice crystals (e.g., high altitude ice crystals) in a volume of airspace based on radar reflectivity values and one or more other types of information indicative of weather conditions in the volume of airspace, such as one or more of: ambient air temperature and altitude. For example, the processor may predict the ice crystals presence by at least estimating the iced water content level within a volume of airspace of interest based on radar reflectivity values for the volume of airspace (e.g., stored as in a three-dimensional buffer) and other information indicative of weather conditions of the volume of airspace. The processor may estimate the iced water content level using a model that relates the information indicative of weather conditions in and around the volume of interest to iced water content in the atmosphere.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: March 2, 2021
    Assignee: Honeywell International Inc.
    Inventors: Jan Lukas, Ondrej Kotaba, David C. Vacanti, Michal Dobes, Brennan Kilty
  • Publication number: 20210048522
    Abstract: In some examples, a system is configured to be mounted on a vehicle, the system including one or more phased-array radar devices configured to transmit first radar signals, receive first returned radar signals, transmit second radar signals, and receive second returned radar signals. In some examples, the system also includes processing circuitry configured to detect an object based on the first returned radar signals and determine an estimated altitude of the vehicle above a ground surface based on the second returned radar signals.
    Type: Application
    Filed: April 23, 2018
    Publication date: February 18, 2021
    Inventors: Marc M. Pos, David C. Vacanti
  • Patent number: 10914830
    Abstract: In some examples, a radar system includes phase-locked loop (PLL) circuitry configured to generate a control voltage signal and processing circuitry configured to generate a reference signal to drive the PLL circuitry to generate the control voltage signal. In some examples, the radar system also includes voltage-controlled oscillator (VCO) circuitry configured to generate radio-frequency (RF) signals based on the control voltage signal and one or more antennas configured to transmit the RF signals and receive returned RF signals. In some examples, the radar system further includes receiver circuitry configured to generate intermediate-frequency (IF) signals based on the returned RF signals, wherein the processing circuitry is further configured to detect an object based on the IF signals.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: February 9, 2021
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Marc M. Pos
  • Publication number: 20210025974
    Abstract: In some examples, a radar system includes first direct digital synthesizer (DDS) circuitry and first phase-locked loop (PLL) circuitry configured to generate a first sinusoidal signal based on a first DDS signal generated by the first DDS circuitry. In some examples, the radar system further includes transmitter circuitry configured to generate a radar signal based on the first sinusoidal signal. In some examples, the radar system also includes one or more antennas configured to transmit the radar signal and receive a return signal based on the radar signal. In some examples, the radar system includes second DDS circuitry, second PLL circuitry configured to generate a second sinusoidal signal based on a second DDS signal generated by the second DDS circuitry, and receiver circuitry configured to process the return signal based on the second sinusoidal signal.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 28, 2021
    Inventors: David C. Vacanti, Marc M. Pos
  • Patent number: 10877150
    Abstract: In some examples, a system includes a weather radar device configured to transmit radar signals, receive first reflected radar signals at a first time, and receive second reflected radar signals at a second time. In some examples, the system also includes processing circuitry configured to determine a first magnitude of reflectivity based on the first reflected radar signals and determine a second magnitude of reflectivity based on the second reflected radar signals. In some examples, the processing circuitry is also configured to determine a temporal variance in reflectivity magnitudes based on determining a difference in reflectivity between the first magnitude and the second magnitude. In some examples, the processing circuitry is further configured to determine a presence of ice crystals based on the first magnitude of reflectivity, the second magnitude of reflectivity, and the temporal variance in reflectivity magnitudes.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: December 29, 2020
    Assignee: Honeywell International Inc.
    Inventors: Pavel Badin, David C. Vacanti, Jan Lukas
  • Patent number: 10871457
    Abstract: In some examples, a radar device is configured to detect an object, where the radar device includes transceiver circuitry configured to transmit radar signals having a first polarization type towards the object, receive radar signals having the first polarization type reflected from the object, and receive radar signals having a second polarization type reflected from the object, the second polarization type being different than the first polarization type. The radar device also includes processing circuitry configured to determine a material category of the object based on the radar signals having the first polarization type reflected from the object and the radar signals having the second polarization type reflected from the object.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: December 22, 2020
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Marc M. Pos
  • Patent number: 10830873
    Abstract: In some examples, a radar system includes first direct digital synthesizer (DDS) circuitry and first phase-locked loop (PLL) circuitry configured to generate a first sinusoidal signal based on a first DDS signal generated by the first DDS circuitry. In some examples, the radar system further includes transmitter circuitry configured to generate a radar signal based on the first sinusoidal signal. In some examples, the radar system also includes one or more antennas configured to transmit the radar signal and receive a return signal based on the radar signal. In some examples, the radar system includes second DDS circuitry, second PLL circuitry configured to generate a second sinusoidal signal based on a second DDS signal generated by the second DDS circuitry, and receiver circuitry configured to process the return signal based on the second sinusoidal signal.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: November 10, 2020
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Marc M. Pos
  • Publication number: 20200341132
    Abstract: A radar apparatus with a transmission antenna array that outputs a high aspect ratio frequency modulation continuous wave (FMCW) transmission beam that illuminates a large field of regard in elevation and may be both electronically and mechanically scanned in azimuth. The weather radar apparatus includes a receive array and receive electronics that may receive the reflected return radar signals and digitally form a plurality of receive beams that may be used to determine characteristics of the area in the field of regard. The receive beams may be used to determine reflectivity of weather systems and provide a coherent weather picture. The weather radar apparatus may simultaneously process the receive signals into monopulse beams that may be used for accurate navigation as well as collision avoidance.
    Type: Application
    Filed: July 14, 2020
    Publication date: October 29, 2020
    Inventors: Keone J. Holt, David C. Vacanti, Marc M. Pos
  • Publication number: 20200333452
    Abstract: A portable radar system that may leverage the processing power, input and/or display functionality in mobile computing devices. Some examples of mobile computing devices may include mobile phones, tablet computers, laptop computers and similar devices. The radar system of this disclosure may include a wired or wireless interface to communicate with the mobile computing device, or similar device that includes a display. The radar system may be configured with an open set of instructions for interacting with an application executing on the mobile computing device to accept control inputs as well as output signals that the application may interpret and display, such as target detection and tracking. The radar system may consume less power than other radar systems. The radar system of this disclosure may be used for a wide variety of applications by consumers, military, law enforcement and commercial use.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: David C. Vacanti, Jeffrey D. Radke