Patents by Inventor David C. Wendell

David C. Wendell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230288509
    Abstract: A method for reordering a segmented MRI pulse sequence includes synchronizing to a physiologic signal of a heart or vessel, to a respiratory signal, or to an external trigger source, and acquiring a plurality of data collecting segments as a contiguous block in a phase encoding direction such that lines of the plurality of data collecting segments are alternately acquired in a forward direction and a reverse direction for each consecutive data collecting segment.
    Type: Application
    Filed: February 28, 2023
    Publication date: September 14, 2023
    Inventors: Wolfgang G. Rehwald, Raymond J. Kim, Enn-Ling Chen, David C. Wendell
  • Patent number: 10955511
    Abstract: A method for correcting image inhomogeneity includes acquiring a non-normalized image and a reference image using receiver coils. A high-signal mask and a low-signal mask are created. Each pixel in the high-signal mask is set to a predetermined integer value if the reference image pixel at the same specific location has a value above a threshold value. Each pixel in the low-signal mask is set to the predetermined integer value if the reference image pixel at the same specific location has a value below or equal to the threshold value. A coil normalization map is created by smoothing the reference image with filters. Then, an iterative procedure is performed to update the coil normalization map using the high-signal mask and the low-signal mask. Following the iterative procedure, the non-normalized image is divided by the current coil normalization map to yield a normalized image.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: March 23, 2021
    Assignees: Siemens Healthcare GmbH, Duke University
    Inventors: Wolfgang G. Rehwald, David C. Wendell, Elizabeth R. Jenista, Enn-Ling Chen, Raymond J. Kim
  • Patent number: 10591568
    Abstract: A magnetic resonance imaging system and method are provided for improved phase-sensitive magnetic resonance imaging of tissues affected by cardiovascular pulsatile motion. A magnetically-prepared image dataset and corresponding reference image dataset (for phase sensitivity) are obtained within the duration of a single cardiac cycle. The paired datasets can be single-shot or segmented datasets and a navigator sequence can optionally be provided with each paired dataset. The system and method take advantage of the shape symmetry of the cardiac cycle to acquire the paired dataset in a shorter time interval, thereby reducing misregistration artifacts. The magnetic preparation can include inversion recovery pulses, FIDDLE sequences, other magnetic preparation sequences, or combinations thereof. The reference dataset can be acquired at a lower resolution than the corresponding magnetically-prepared dataset without compromising image quality.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: March 17, 2020
    Assignees: Siemens Healthcare GmbH, Duke University
    Inventors: Wolfgang G. Rehwald, David C. Wendell, Elizabeth R. Jenista, Enn-Ling Chen, Raymond J. Kim
  • Publication number: 20180203086
    Abstract: A magnetic resonance imaging system and method are provided for improved phase-sensitive magnetic resonance imaging of tissues affected by cardiovascular pulsatile motion. A magnetically-prepared image dataset and corresponding reference image dataset (for phase sensitivity) are obtained within the duration of a single cardiac cycle. The paired datasets can be single-shot or segmented datasets and a navigator sequence can optionally be provided with each paired dataset. The system and method take advantage of the shape symmetry of the cardiac cycle to acquire the paired dataset in a shorter time interval, thereby reducing misregistration artifacts. The magnetic preparation can include inversion recovery pulses, FIDDLE sequences, other magnetic preparation sequences, or combinations thereof. The reference dataset can be acquired at a lower resolution than the corresponding magnetically-prepared dataset without compromising image quality.
    Type: Application
    Filed: June 15, 2017
    Publication date: July 19, 2018
    Inventors: Wolfgang G. Rehwald, David C. Wendell, Elizabeth R. Jenista, Enn-Ling Chen, Raymond J. Kim