Patents by Inventor David Charles Donnell Butler

David Charles Donnell Butler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240175020
    Abstract: The invention relates generally to tRNA-based effector molecules (TREMs) comprising an asialoglycoprotein receptor (ASGPR) binding moiety, as well as compositions and methods relating thereto.
    Type: Application
    Filed: December 23, 2021
    Publication date: May 30, 2024
    Inventors: Theonie Anastassiadis, David Charles Donnell Butler, Neil Kubica, Qingyi Li, Armand Gatien Ngounou Wetie, Guangliang Wang
  • Publication number: 20240175018
    Abstract: Among other things, the present disclosure provides designed PNPLA3 oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: March 3, 2023
    Publication date: May 30, 2024
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Luciano Henrique Apponi, Hanna Maria Wisniewska, Xiayun Cheng, Young Jin Cho
  • Publication number: 20240174710
    Abstract: The present disclosure, among other things, provides technologies for synthesis, including reagents and methods for stereoselective synthesis. In some embodiments, the present disclosure provides compounds useful as chiral auxiliaries. In some embodiments, the present disclosure provides reagents and methods for oligonucleotide synthesis. In some embodiments, the present disclosure provides reagents and methods for chirally controlled preparation of oligonucleotides. In some embodiments, technologies of the present disclosure are particularly useful for constructing challenging internucleotidic linkages, providing high yields and stereoselectivity.
    Type: Application
    Filed: May 12, 2023
    Publication date: May 30, 2024
    Inventors: David Charles Donnell Butler, Christopher P. Hencken, Naoki Iwamoto, Pachamuthu Kandasamy, Alvaro Andres Lanao, Genliang Lu, Mamoru Shimizu, Sethumadhavan Divakaramenon, Chandra Vargeese, Gopal Reddy Bommineni, Subramanian Marappan
  • Publication number: 20240132894
    Abstract: Among other things, the present disclosure provides designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 25, 2024
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Maria David Frank-Kamenetsky, Luciano Henrique Apponi, Young Jin Cho
  • Publication number: 20240117347
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 11, 2024
    Inventors: David Charles Donnell Butler, Sethumadhavan Divakaramenon, Christopher J. Francis, Maria David Frank-Kamenetsky, Naoki Iwamoto, Genliang Lu, Subramanian Marappan, Meena, Chandra Vargeese, Gregory L. Verdine, Hailin Yang, Jason Jingxin Zhang
  • Publication number: 20240109931
    Abstract: Among other things, the present disclosure provides designed APOC3 oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: October 4, 2022
    Publication date: April 4, 2024
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Maria David Frank-Kamenetsky, Luciano Henrique Apponi, Hanna Maria Wisniewska-wrona, Xiayun Cheng, Young Jin Cho
  • Publication number: 20240026358
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: March 11, 2022
    Publication date: January 25, 2024
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
  • Patent number: 11873316
    Abstract: The present disclosure, among other things, provides technologies for oligonucleotide synthesis. In some embodiments, the present disclosure provides phosphoramidites and methods for synthesis thereof. In some embodiments, provided methods provides higher yields and/or purities. In some embodiments, provided methods remove byproducts without contact with an aqueous solution.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: January 16, 2024
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: David Charles Donnell Butler, Pachamuthu Kandasamy, Subramanian Marappan, Ik-Hyeon Paik, Jayakanthan Kumarasamy, Gopal Reddy Bommineni
  • Publication number: 20230392137
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: September 26, 2022
    Publication date: December 7, 2023
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
  • Publication number: 20230348524
    Abstract: Among other things, the present disclosure provides technologies for oligonucleotide preparation, particularly chirally controlled oligonucleotide preparation, which technologies provide greatly improved crude purity and yield, and significantly reduce manufacturing costs.
    Type: Application
    Filed: March 17, 2023
    Publication date: November 2, 2023
    Inventors: Keith Andrew Bowman, Chandra Vargeese, David Charles Donnell Butler, Pachamuthu Kandasamy, Mohammed Rowshon Alam, Mamoru Shimizu, Stephany Michelle Standley, Vincent Aduda, Gopal Reddy Bommineni, Snehlata Tripathi, Ilia Korboukh
  • Publication number: 20230329201
    Abstract: Among other things, the present disclosure provides cells and non-human animals engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, the present disclosure provides cells and non-human animals engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, non-human animals are genetically modified rodents such as mice, rat, etc. In some embodiments, non-human animals are mice. In some embodiments, the present disclosure provides technologies for assessing an agent comprising administering the agent to a cell or non-human animal engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, such a cell or non-human animal is engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, an agent is a pharmaceutical agent. In some embodiments, an agent is or comprises an oligonucleotide.
    Type: Application
    Filed: August 23, 2021
    Publication date: October 19, 2023
    Inventors: Hailin Yang, Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Jack David Godfrey, Naoki Iwanmoto
  • Publication number: 20230295617
    Abstract: In some embodiments, the present disclosure pertains to compositions and methods related to delivery of a biologically active agent, wherein the compositions comprise a biologically active agent and a lipid. In various embodiments, the lipid is selected from: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl. In some embodiments, a composition and method are useful for delivery of a biologically active agent to a particular cell or tissue, e.g., a muscle cell or tissue.
    Type: Application
    Filed: November 30, 2022
    Publication date: September 21, 2023
    Inventors: Chandra Vargeese, Jason Jingxin Zhang, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Naoki Iwamoto, Hailin Yang, Maria David Frank-Kamenetsky, Subramanian Marappan
  • Patent number: 11718638
    Abstract: The present disclosure, among other things, provides technologies for synthesis, including reagents and methods for stereoselective synthesis. In some embodiments, the present disclosure provides compounds useful as chiral auxiliaries. In some embodiments, the present disclosure provides reagents and methods for oligonucleotide synthesis. In some embodiments, the present disclosure provides reagents and methods for chirally controlled preparation of oligonucleotides. In some embodiments, technologies of the present disclosure are particularly useful for constructing challenging internucleotidic linkages, providing high yields and stereoselectivity.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 8, 2023
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: David Charles Donnell Butler, Christopher P. Hencken, Naoki Iwamoto, Pachamuthu Kandasamy, Alvaro Andres Lanao, Genliang Lu, Mamoru Shimizu, Sethumadhavan Divakaramenon, Chandra Vargeese, Gopal Reddy Bommineni, Subramanian Marappan
  • Publication number: 20230220384
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: October 6, 2020
    Publication date: July 13, 2023
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto
  • Publication number: 20230203484
    Abstract: The present disclosure provides double stranded oligonucleotides, compositions, and methods relating thereto. The present disclosure encompasses the recognition that structural elements of double stranded oligonucleotides, such as base sequence, chemical modifications (e.g, modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, and/or stereochemistry (e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)), and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g, RNA interference (RNAi) activity, stability, delivery, etc. The present disclosure also provides methods for treatment of diseases using provided double stranded oligonucleotide compositions, for example, in RNA interference.
    Type: Application
    Filed: May 24, 2021
    Publication date: June 29, 2023
    Applicant: WAVE LIFE SCIENCES LTD.
    Inventors: Chandra VARGEESE, Naoki IWAMOTO, Luciano H. APPONI, David Charles Donnell BUTLER, Pachamuthu KANDASAMY, Subramanian MARAPPAN, Snehlata TRIPATHI, Wei LIU, Mugdha BEDEKAR, Vinod VATHIPADIEKAL
  • Publication number: 20230203509
    Abstract: The disclosure relates generally to uses of tRNA-based effector molecules having a non-naturally occurring modification.
    Type: Application
    Filed: May 28, 2021
    Publication date: June 29, 2023
    Inventors: Theonie Anastassiadis, David Arthur Berry, Christine Elizabeth Hajdin, Noubar Boghos Afeyan, David Charles Donnell Butler, Qingyi Li
  • Publication number: 20230203510
    Abstract: The disclosure relates generally to methods of modulating a production parameter of an RNA corresponding to, or polypeptide encoded by, a nucleic acid sequence comprising an endogenous ORF having a premature termination codon, comprising administering a tRNA-based effector molecule having a non-naturally occurring modification.
    Type: Application
    Filed: May 28, 2021
    Publication date: June 29, 2023
    Inventors: Theonie Anastassiadis, David Charles Donnell Butler, Neil Kubica, Qingyi Li
  • Patent number: 11643657
    Abstract: The present invention relates to chirally controlled oligonucleotides, chirally controlled oligonucleotide compositions, and the method of making and using the same. The invention specifically encompasses the identification of the source of certain problems with prior methodologies for preparing chiral oligonucleotides, including problems that prohibit preparation of fully chirally controlled compositions, particularly compositions comprising a plurality of oligonucleotide types. In some embodiments, the present invention provides chirally controlled oligonucleotide compositions. In some embodiments, the present invention provides methods of making chirally controlled oligonucleotides and chirally controlled oligonucleotide compositions.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 9, 2023
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: David Charles Donnell Butler, Naoki Iwamoto, Meena, Nenad Svrzikapa, Gregory L. Verdine, Ivan Zlatev
  • Publication number: 20230136645
    Abstract: The present disclosure, among other things, provides technologies for preparing and purifying phosphoramidites for oligonucleotide synthesis.
    Type: Application
    Filed: August 5, 2022
    Publication date: May 4, 2023
    Inventors: David Charles Donnell Butler, Subramanian Marappan, Ik-Hyeon Paik
  • Publication number: 20230089442
    Abstract: Among other things, the present disclosure provides technologies for oligonucleotide preparation, particularly chirally controlled oligonucleotide preparation, which technologies provide greatly improved crude purity and yield, and significantly reduce manufacturing costs.
    Type: Application
    Filed: March 19, 2020
    Publication date: March 23, 2023
    Inventors: Pachamuthu Kandasamy, Mamoru Shimizu, David Charles Donnell Butler, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Mohammed Rowshon Alam, Sethumadhavan Divakaramenon, Bijay Tilak Bhattarai, Chandra Vargeese, Keith Andrew Bowman, Stephany Michelle Standley