Patents by Inventor David E. Dericotte

David E. Dericotte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190105804
    Abstract: In one aspect, the present invention relates to a method of making multi-phase particles that include nanoparticulates and matrix, which maintains the nanoparticulates in a dispersed state. A flowing gas dispersion is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains liquid vehicle and at least a first precursor to a first material and a second precursor to a second material. The multi-phase particles are formed from the gas dispersion by removing at least a portion of the liquid vehicle from the droplets of precursor medium. The nanoparticulates in the multi-phase particles include the first material and the matrix in the multi-phase particles includes the second material.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 11, 2019
    Inventors: Toivo T. KODAS, Mark J. HAMPDEN-SMITH, Klaus KUNZE, David E. DERICOTTE, Karel VANHEUSDEN, Aaron D. STUMP
  • Patent number: 10201916
    Abstract: In one aspect, the present invention relates to a method of making multi-phase particles that include nanoparticulates and matrix, which maintains the nanoparticulates in a dispersed state. A flowing gas dispersion is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains liquid vehicle and at least a first precursor to a first material and a second precursor to a second material. The multi-phase particles are formed from the gas dispersion by removing at least a portion of the liquid vehicle from the droplets of precursor medium. The nanoparticulates in the multi-phase particles include the first material and the matrix in the multi-phase particles includes the second material.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 12, 2019
    Assignee: SICPA HOLDING SA
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Klaus Kunze, David E. Dericotte, Karel Vanheusden, Aaron Stump
  • Publication number: 20140042652
    Abstract: In one aspect, the present invention relates to a method of making multi-phase particles that include nanoparticulates and matrix, which maintains the nanoparticulates in a dispersed state. A flowing gas dispersion is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains liquid vehicle and at least a first precursor to a first material and a second precursor to a second material. The multi-phase particles are formed from the gas dispersion by removing at least a portion of the liquid vehicle from the droplets of precursor medium. The nanoparticulates in the multi-phase particles include the first material and the matrix in the multi-phase particles includes the second material.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Klaus Kunze, David E. Dericotte, Karel Vanheusden, Aaron Stump
  • Publication number: 20080113257
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Application
    Filed: April 30, 2007
    Publication date: May 15, 2008
    Applicant: CABOT CORPORATION
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Patent number: 7214255
    Abstract: Provided is an aerosol manufacture facility including an aerosol generator (600), an aerosol heater (604), an aerosol cooler (604), a particle collector (606), a precursor liquid supply system (608), a carrier gas supply system (610), and a cooling gas supply system (612), and optionally other components. Also provided is an aerosol method for manufacturing particles in the aerosol manufacture facility, which, in one embodiment, involves automated process control.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: May 8, 2007
    Assignee: Cabot Corporation
    Inventors: James H. Brewster, David E. Dericotte, Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell
  • Patent number: 7211345
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: May 1, 2007
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Patent number: 7138159
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: November 21, 2006
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Patent number: 6967183
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: November 22, 2005
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Patent number: 6685762
    Abstract: A process for making particles, the process including generating an aerosol stream which includes droplets of a precursor liquid dispersed in a carrier gas, the precursor liquid including a liquid vehicle and a precursor material, separating the precursor liquid into two portions during the generating step, a first portion exiting the generator in the droplets of the aerosol stream and a second portion exiting as effluent at least a portion of which is recycled to the generator, and also during the generating step adding additional liquid vehicle to at least one of the carrier gas supply, the precursor liquid supply, and the aerosol generator, to at least partially compensate for the tendency of the precursor liquid to become more concentrated in the precursor material over time, and then removing at least a portion of the liquid vehicle from the droplets and forming particles in the aerosol stream.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: February 3, 2004
    Assignee: Superior MicroPowders LLC
    Inventors: James H. Brewster, David E. Dericotte, Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell
  • Publication number: 20030130114
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Application
    Filed: August 5, 2002
    Publication date: July 10, 2003
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Publication number: 20030118884
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Application
    Filed: August 5, 2002
    Publication date: June 26, 2003
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Publication number: 20030064265
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Application
    Filed: August 5, 2002
    Publication date: April 3, 2003
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Publication number: 20020107140
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Application
    Filed: March 22, 2001
    Publication date: August 8, 2002
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitanoof, Rimple Bhatia, David E. Dericotte, Paolina Atanassova