Patents by Inventor David E. Newman

David E. Newman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240080712
    Abstract: Message faults are caused by network crowding and signal fading at high frequencies of 5G and 6G. Current error-detection and correction algorithms are computationally demanding, especially for new low-cost reduced-capability IoT devices. Disclosed are methods for (a) determining whether a message is faulted using a compact error-detection code, (b) localizing the most likely faulted message element(s) according to the waveform signal, and (c) determining the likely corrected version by back-calculating from the error-detection code. Other versions include testing various modulation substitutions for the most suspicious message elements, having the worst signal quality. The waveform parameters may include a deviation from an average amplitude, phase, frequency, or polarization, as well as an amount of amplitude variation and phase variation within the message element. Identification of the most likely faulted message elements may enable recovery of the message without a costly retransmission.
    Type: Application
    Filed: October 17, 2023
    Publication date: March 7, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240059281
    Abstract: Most automatic driver-assistance systems, including allegedly autonomous driving systems, fail to react to certain hazard cues that human drivers instinctively notice. Chief among those cues is the sudden illumination of the brake lights in the vehicle ahead. Admittedly, it is difficult for software to discriminate between brake lights, turn signal lights, and running lights—but that is what safety requires. Disclosed herein are methods and systems for processors on vehicles to interpret sensor images, detect brake lights ahead, and take proper avoidance action such as braking and swerving. The proper strategy may be decided according to the relative speed of the two vehicles and their distance apart when the brake lights come on, among other factors. With such foresighted collision mitigation capability, autonomous and semi-autonomous vehicles may be able to save many lives due to unnecessary collisions in traffic.
    Type: Application
    Filed: October 15, 2023
    Publication date: February 22, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240063942
    Abstract: Message faulting is a critical unsolved problem for 5G and 6G. Disclosed herein is a method for combining an AI-based analysis of the waveform data of each message element, plus the constraint of an associated error-detection code (such as a CRC or parity construct of the correct message) to localize and, in many cases, correct a limited number of faults per message, without a retransmission. For example, the waveform data may include a deviation of the amplitude or phase of a particular message element, relative to an average of the amplitudes or phases of the other message elements that have the same demodulation value. The outliers are thereby exposed as the most likely faulted message elements. In addition, using the error-detection code, the AI model can determine the most likely corrected message, thereby avoiding retransmission delays and power usage and other costs.
    Type: Application
    Filed: November 5, 2023
    Publication date: February 22, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240054899
    Abstract: Traffic collisions involving autonomous vehicles can be greatly reduced by timely initiation of evasive action. However, calculating a suitable sequence of actions capable of avoiding or minimizing the collision may require the speed of a supercomputer. Therefore, disclosed is a method for the autonomous vehicle to transmit an emergency message with sensor data to a nearby access point in 5G or 6G, and the access point can forward the data to a supercomputer trained in collision avoidance. The supercomputer, millions or billions of times faster than vehicle computers, explores many sequences of actions and selects the one most likely to avoid the collision or if unavoidable, the sequence of actions that results in the least harm. Again using an exclusive channel, the supercomputer and the access point can relay the selected sequence to the autonomous vehicle, for immediate collision avoidance or harm minimization.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 15, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240045013
    Abstract: 5G and especially 6G are built around beamed transmissions and receptions, but aligning the beams toward the intended recipient is currently an expensive and complex process that reduced-capability devices may have difficulty performing. Therefore, an improved beam alignment process is disclosed, involving “triangle” beams. A triangle beam is a wide transmission beam that is arranged to be high-power at one side and low-power at the other side, tapering monotonically between the two angles. A user device can detect the triangle beam and measure the received amplitude or power level. By comparing to the amplitude of a previous transmission, the user device can determine its angle relative to the base station. The user device can then transmit directional beams toward the base station, and can also inform the base station of the angle so that they both can use well-directed transmission and reception beams. Many other aspects are disclosed.
    Type: Application
    Filed: March 29, 2023
    Publication date: February 8, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240048429
    Abstract: Message faults are expected to be a major impediment to 5G and future 6G throughput. The disclosed procedures enable a wireless receiver to recover many types of message faults based on the demodulation quality of each message element, among other diagnostic tests, and then to recover the correct message either by calculation (based on an embedded error-detection code) or by substitution (based on a search of all other modulation states in place of the faulted message elements). The method also includes determining, according to the modulation quality, when there are too many faults to efficiently mitigate, in which case a retransmission of just the affected portion is requested. The receiver can then merge the two versions of the message, selecting the better-quality message element at each position, and thereby correct the faulted message versions.
    Type: Application
    Filed: October 4, 2023
    Publication date: February 8, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240039770
    Abstract: Additional information can be packed into each message element of a 5G/6G message by varying the amplitude of the signal within the symbol-time of the message element. For example, the difference between the amplitude at the beginning and ending of the symbol-time may encode additional bits, thereby providing higher information density in each transmission. The amplitude variation may be abrupt, such as a sudden change from the first amplitude value to the second amplitude value in the middle of the symbol-time, or it may be a gradual linear ramp spanning the symbol-time. In either case, the modulation scheme may include amplitude variation levels as well as the amplitude levels themselves, thereby providing a larger modulation space and hence shorter messages. Effects on crosstalk and frequency offset due to the amplitude variation, and their mitigation, are also disclosed.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 1, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240031205
    Abstract: Message faults are expected to become a major problem for next-generation 5G/6G networks, due to signal fading, high backgrounds, and high density of users. Disclosed are methods to modulate and demodulate messages to optimize noise margins, greatly enhancing reliability at negligible cost, according to some embodiments. A transmitter can modulate a message using amplitude-phase modulation, yet a receiver can conveniently receive and process the signals according to separate in-phase (I) and quad-phase (Q) branches, that is, according to QAM. The receiver can then convert the I and Q values to the original waveform amplitude and phase mathematically, and then demodulate those values using predetermined amplitude and phase levels as provided by a proximate demodulation reference.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240031797
    Abstract: In traffic, vehicle safety generally depends on the relative separation between two vehicles, and not at all on their absolute geographical positions. Therefore, methods are disclosed for determining the relative separation differentially. Two vehicles simultaneously acquire the same satellite signals, reduce the signals to data, and then transmit the data, preferably with fast 5G or 6G, to one of the vehicles or to a roadside access point. A computer then analyzes the data based on differences between the two sets of signals, thereby determining the separation distance and angle between the two vehicles. Other vehicles within range can do the same. The relative locations of all the participating vehicles can then be broadcast, in the form of a table or a map, to all the vehicles in proximity. Improved position measurements can enable collision avoidance and harm minimization in traffic.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240032011
    Abstract: Due to the rapid cadence of messages in 5G and expected 6G networks, and rapid variations in the background and interference profile, real-time management decision-making is increasingly impractical for even experienced network operators. Therefore, means are disclosed for AI-based systems to provide support and assistance, including when appropriate to adjust network operational parameters autonomously. After suitable training, processors in a base station, or more preferably a core network facility managing multiple cells, can respond more quickly and more accurately than humans to rapid random changes in demand, interference, intrusion, and emergencies. Disclosed also are means for user devices to keep the base station and the AI management model informed of signal quality upon each uplink message (such as acknowledgements) using vary brief, multiplexed feedback messages responsive to downlink test signals.
    Type: Application
    Filed: September 30, 2023
    Publication date: January 25, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240031968
    Abstract: In busy 5G and 6G networks, precise timing and synchronization are key to maintaining throughput with low fault rates. Disclosed are systems and methods for adjusting each user device's clock for proper reception, including downlink propagation delays, uplink propagation delays, round-trip propagation delays, and Doppler shifts, individually for each user device, and including any uplink/downlink asymmetries. The clock adjustment and timing advance of each user device is based on a predetermined transmission schedule for timing signals, broadcast by the base station. The Doppler shift is measured by the base station, according to uplink timing signals, and communicated to the user device in a single final timing signal. The single final timing signal is either frequency-shifted by the measured Doppler shift, or delayed proportional to the Doppler shift, either of which indicates, to the user device, how to apply the correct timing to future uplink messages.
    Type: Application
    Filed: September 23, 2023
    Publication date: January 25, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240015721
    Abstract: In a 5G or 6G wireless network, the base station can assist user devices in aligning their beams toward the base station, and can align downlink beams toward each of the user devices, by exchanging brief test signals followed by brief encoded feedback messages. The test signals may be transmitted in different directions, or with different beam widths, or with other transmission parameters, thereby enabling the user device to select the best version and reply accordingly. In addition, the user device can determine, from information in a message accompanying the test signals, a direction or angle of each test signal, and thereby determine the correct direction toward the base station by adding 180 degrees, without further experimentation. For compact messaging, a zero-power state may be included in the modulation scheme, thereby providing an efficient format for selecting which beam or which direction is best received.
    Type: Application
    Filed: September 23, 2023
    Publication date: January 11, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240015681
    Abstract: Prior art includes complex clock synchronization in 5G and 6G based on precision time measurements and multiple message exchanges. Disclosed is a simpler synchronization procedure suitable for reduced-capability receivers as well as high-performance users. The base station can transmit a brief signal on a specific subcarrier, surrounded fore and aft by silent periods, and the receiver can measure the signals in the silent periods to detect intrusion of the signal into one or the other silent periods, thereby indicating a timing offset. Alternatively, the base station can transmit a brief signal spanning an interface between subsequent symbol-times, and the receiver can measure the energy received in the two symbol-times, thereby detecting an offset. In either case, and other versions disclosed, the receiver can calculate the size and direction of the clock offset by amplitude measurements, and apply a correction without further communications between the user device and the base station.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Patent number: 11871254
    Abstract: A base station can maintain a transmission beam toward a user device, even in changing conditions, by realtime incremental feedback in 5G and 6G. The incremental feedback is a compact one-of-three request, from the user device, indicating a higher, keep-same, or lower adjustment of a transmission parameter such as the power or beam angle. The base station then adds or subtracts a predetermined increment to that transmission parameter, thereby improving reception with each downlink message. Such incremental adjustment continues with each message to the user device, until the optimum value is reached, at which time the user device selects the keep-same choice. For efficient optimization, the base station can vary the increment size, for example escalating to larger sizes upon repeated same-sign requests, and then de-escalating to smaller increments for fine-tuning and beam optimization. Many other aspects are disclosed.
    Type: Grant
    Filed: March 28, 2023
    Date of Patent: January 9, 2024
    Assignee: ULTRALOGIC 6G, LLC
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240007981
    Abstract: Timing is crucial for next-generation networks at 5G and 6G high frequencies. Disclosed are very brief timing signals, and low-complexity procedures for processing them, to obtain a precision time-base lock between a base station and its user devices. In contrast to conventional modulation, the disclosed timing signals feature a change in modulation centrally positioned in a timing resource element. Since the time boundaries of the resource element at the receiver are determined by the receiver's clock, while the actual time of the timing signal is determined by the base station's clock, a displacement of the received timing signal from the midpoint of the resource element indicates a clock offset between the user device and the base station. In addition, by measuring the interval between successive timing signals, the user device can correct its clock rate, and thereby bring the subcarrier frequencies into agreement with the base station.
    Type: Application
    Filed: September 16, 2023
    Publication date: January 4, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240001534
    Abstract: Cooperation among robots is a necessary feature of advanced manufacturing and many other applications. Disclosed are systems and methods for robots to identify each other using simultaneous infrared pulses and wireless messages in 5G or 6G. The wireless message can indicate the wireless address of the transmitting robot, and the infrared signal can indicate which robot, among many, is transmitting the wireless message. Thus the other robots can compare the arrival direction of the infrared signal with an optical image, and thereby localize the transmitting robot. The robots can then begin cooperative actions thereafter. The procedures are suitable for mobile robots in a self-driving and self-managing scenario, fixed and mobile robots cooperating to accomplish a task, and robots intermingled with humans. Multiple operating modes are illustrated across a wide range of industries and use cases.
    Type: Application
    Filed: June 28, 2023
    Publication date: January 4, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20240007251
    Abstract: To assist a user device of a 5G or 6G network in finding its downlink messages, the base station can attach a leading and trailing demarcation to the message. The user device can recognize the demarcations, extract the data between them, and thereby receive the message without computation-intensive searching. Advantageously, the user device can request that the base station not transmit DCI (downlink control information) messages to the user device, since the user device can readily find its messages according to the demarcations. In various embodiments, the demarcations can indicate the address or identity of the intended recipient, the length of the message, the type of the message, and other information to assist the user device. In addition, for even easier detection of the demarcations, the base station can insert a gap of no transmission before and/or after each demarcation. Such demarcations may enable low-cost reduced-capability user devices.
    Type: Application
    Filed: September 16, 2023
    Publication date: January 4, 2024
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20230421290
    Abstract: Message faults are expected to be an increasing problem in 5G and 6G, due to signal fading at high frequencies, heavy background interference, and high user densities. Retransmissions are expensive in time, power, and the additional background they generate. Prior art includes “soft-combining” among multiple copies, an especially ineffective fault mitigation procedure when SNR is low. Nevertheless, the waveform signals of even badly faulted message elements are rich with information about the correct value. Therefore, procedures are disclosed herein for determining which message elements of a corrupted message, or its associated error-detection code, are faulted, by measuring characteristic parameters of the signal waveform of each message element, and correlating those parameters with the associated error-detection code. In many cases, the corrupted message may be corrected without a retransmission, according to some embodiments.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 28, 2023
    Inventors: David E. Newman, R. Kemp Massengill
  • Patent number: 11855924
    Abstract: A user device in 5G/6G is required to search for its downlink control messages across a vast array of frequencies, times, and message length variations, costing substantial computational energy that can stress many reduced-capability devices. A simpler procedure is disclosed in which the user device requests a custom search space consisting of just one (or a small number of) resource elements, recurring periodically. The user device can then receive its downlink control messages, and optionally its downlink data messages as well, starting in the custom search space. In addition, the user device can request that its identification code be placed at the beginning of each downlink control and/or data message, to further ease reception. Optionally, the length of the downlink control and/or data message may be inserted as a header or footer to each message, thereby enabling the user device to identify its messages in a stream of ongoing data.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: December 26, 2023
    Inventors: David E. Newman, R. Kemp Massengill
  • Publication number: 20230408622
    Abstract: Beamforming is a critical element of 5G and especially 6G, but currently requires a series of time-consuming and resource-consuming messages. Disclosed are procedures by which base stations can transmit a phased beam pulse, having a phase that varies with angle, so that each user device can measure the received phase of the pulse and thereby determine its angle relative to the base station. Each user can then sequentially inform the base station of its orientation relative to the base station, or can append that information to another message such as an initial access message or an acknowledgement, for example. The user device and the base station can then exchange messages in narrow beams aimed at each other according to the alignment angle. Also disclosed are procedures to economically generate the wide-angle phased beam by combining overlapping beams of various phases.
    Type: Application
    Filed: August 30, 2023
    Publication date: December 21, 2023
    Inventors: David E. Newman, R. Kemp Massengill