Patents by Inventor David E. Pettit

David E. Pettit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11855667
    Abstract: Methods and devices for radio frequency (RF) loopback for transceivers are described. A transceiver for communicating RF signals with a target device may transmit signals at a transmit frequency and receive signals at a (different) receive frequency. The transceiver may include a waveguide diplexer for separating and combining signals based on frequency. The transceiver may be configured to couple a loopback signal from a common port of the waveguide diplexer; the loopback signal may be based on a transmit signal. The transceiver may include a loopback translator to translate the loopback signal from the transmit frequency to the receive frequency and provide the translated loopback signal to a receiver used for receiving signals from the target device. The receiver may compare the translated loopback signal with a representation of the transmit signal to generate a compensation signal. A transmitter may use the compensation signal to adjust subsequent transmit signals.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: December 26, 2023
    Assignee: Viasat, Inc.
    Inventors: Kenneth V. Buer, Ramanamurthy V. Darapu, Martin Gimersky, David E. Pettit, Bill T. Agar
  • Publication number: 20220131562
    Abstract: Methods and devices for radio frequency (RF) loopback for transceivers are described. A transceiver for communicating RF signals with a target device may transmit signals at a transmit frequency and receive signals at a (different) receive frequency. The transceiver may include a waveguide diplexer for separating and combining signals based on frequency. The transceiver may be configured to couple a loopback signal from a common port of the waveguide diplexer; the loopback signal may be based on a transmit signal. The transceiver may include a loopback translator to translate the loopback signal from the transmit frequency to the receive frequency and provide the translated loopback signal to a receiver used for receiving signals from the target device. The receiver may compare the translated loopback signal with a representation of the transmit signal to generate a compensation signal. A transmitter may use the compensation signal to adjust subsequent transmit signals.
    Type: Application
    Filed: January 5, 2022
    Publication date: April 28, 2022
    Inventors: Kenneth V. Buer, Ramanamurthy V. Darapu, Martin Gimersky, David E. Pettit, Bill T. Agar
  • Patent number: 11258472
    Abstract: Methods and devices for radio frequency (RF) loopback for transceivers are described. A transceiver for communicating RF signals with a target device may transmit signals at a transmit frequency and receive signals at a (different) receive frequency. The transceiver may include a waveguide diplexer for separating and combining signals based on frequency. The transceiver may be configured to couple a loopback signal from a common port of the waveguide diplexer; the loopback signal may be based on a transmit signal. The transceiver may include a loopback translator to translate the loopback signal from the transmit frequency to the receive frequency and provide the translated loopback signal to a receiver used for receiving signals from the target device. The receiver may compare the translated loopback signal with a representation of the transmit signal to generate a compensation signal. A transmitter may use the compensation signal to adjust subsequent transmit signals.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: February 22, 2022
    Assignee: VIASAT, Inc.
    Inventors: Kenneth V. Buer, Ramanamurthy V. Darapu, Martin Gimersky, David E. Pettit, Bill T. Agar
  • Publication number: 20200358467
    Abstract: Methods and devices for radio frequency (RF) loopback for transceivers are described. A transceiver for communicating RF signals with a target device may transmit signals at a transmit frequency and receive signals at a (different) receive frequency. The transceiver may include a waveguide diplexer for separating and combining signals based on frequency. The transceiver may be configured to couple a loopback signal from a common port of the waveguide diplexer; the loopback signal may be based on a transmit signal. The transceiver may include a loopback translator to translate the loopback signal from the transmit frequency to the receive frequency and provide the translated loopback signal to a receiver used for receiving signals from the target device. The receiver may compare the translated loopback signal with a representation of the transmit signal to generate a compensation signal. A transmitter may use the compensation signal to adjust subsequent transmit signals.
    Type: Application
    Filed: February 1, 2019
    Publication date: November 12, 2020
    Applicant: VIASAT, INC.
    Inventors: Kenneth V. BUER, Ramanamurthy V. DARAPU, Martin GIMERSKY, David E. PETTIT, Bill T. AGAR
  • Patent number: 9548822
    Abstract: The present disclosure, for example, relates to one or more techniques for linearizing a signal in a communications system. An input signal may be obtained at a beginning of a signal path of a radio frequency (RF) communication device. The RF communication device may estimate subsequent distortion of the input signal due to the signal path. The estimated distortion may include estimated phase distortion and estimated amplitude distortion of the input signal. The RF communication device may adjust phase and amplitude within the signal path to compensate for the estimated phase distortion and the estimated amplitude distortion to produce an adjusted signal. The phase within the signal path of the input signal may be adjusted separately from the amplitude within the signal path of the input signal. The RF communication device may generate a linearized signal at an end of the signal path based at least in part on the adjusted signal.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 17, 2017
    Assignee: ViaSat, Inc.
    Inventors: Dean L. Cook, Bobby D. Anderson, II, Konrad Miehle, David E. Pettit
  • Publication number: 20160269129
    Abstract: The present disclosure, for example, relates to one or more techniques for linearizing a signal in a communications system. An input signal may be obtained at a beginning of a signal path of a radio frequency (RF) communication device. The RF communication device may estimate subsequent distortion of the input signal due to the signal path. The estimated distortion may include estimated phase distortion and estimated amplitude distortion of the input signal. The RF communication device may adjust phase and amplitude within the signal path to compensate for the estimated phase distortion and the estimated amplitude distortion to produce an adjusted signal. The phase within the signal path of the input signal may be adjusted separately from the amplitude within the signal path of the input signal. The RF communication device may generate a linearized signal at an end of the signal path based at least in part on the adjusted signal.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Dean L. Cook, Bobby D. Anderson, II, Konrad Miehle, David E. Pettit
  • Publication number: 20160182272
    Abstract: The present disclosure, for example, relates to one or more techniques for linearizing a signal in a communications system. An input signal may be obtained at a beginning of a signal path of a radio frequency (RF) communication device. The RF communication device may estimate subsequent distortion of the input signal due to the signal path. The estimated distortion may include estimated phase distortion and estimated amplitude distortion of the input signal. The RF communication device may adjust phase and amplitude within the signal path to compensate for the estimated phase distortion and the estimated amplitude distortion to produce an adjusted signal. The phase within the signal path of the input signal may be adjusted separately from the amplitude within the signal path of the input signal. The RF communication device may generate a linearized signal at an end of the signal path based at least in part on the adjusted signal.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Dean L. Cook, Bobby D. Andersen, II, Konrad Miehle, David E. Pettit
  • Patent number: 9374262
    Abstract: The present disclosure, for example, relates to one or more techniques for linearizing a signal in a communications system. An input signal may be obtained at a beginning of a signal path of a radio frequency (RF) communication device. The RF communication device may estimate subsequent distortion of the input signal due to the signal path. The estimated distortion may include estimated phase distortion and estimated amplitude distortion of the input signal. The RF communication device may adjust phase and amplitude within the signal path to compensate for the estimated phase distortion and the estimated amplitude distortion to produce an adjusted signal. The phase within the signal path of the input signal may be adjusted separately from the amplitude within the signal path of the input signal. The RF communication device may generate a linearized signal at an end of the signal path based at least in part on the adjusted signal.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: June 21, 2016
    Assignee: ViaSat, Inc.
    Inventors: Dean L. Cook, Bobby D. Andersen, II, Konrad Miehle, David E. Pettit