Patents by Inventor David E. Sallows

David E. Sallows has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7176417
    Abstract: A resistive heater having a doped ceramic heating element embedded either partially or completely within a matrix of undoped ceramic material. The ceramic may be silicon carbide, and the dopant may be nitrogen. Many of the advantages of the present heater stern from the fact that the materials used for the heating elements and the matrix material surrounding those elements have substantially the same coefficient of thermal expansion. In one embodiment, the heater is a monolithic plate that is compact, strong, robust, and low in thermal mass, allowing it to respond quickly to power input variations. The resistive heater may be used in many of the reactors and processing chambers used to fabricate integrated circuits, such as those that deposit epitaxial films, and carry out rapid thermal processing.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: February 13, 2007
    Assignee: Mattson Technology, Inc.
    Inventors: Kristian E. Johnsgard, Daniel L. Messineo, David E. Sallows
  • Patent number: 6902622
    Abstract: Systems and methods for epitaxial deposition. The reactor includes a hot wall process cavity enclosed by a heater system, a thermal insulation system, and chamber walls. The walls of the process cavity may comprises a material having a substantially similar coefficient thermal expansion as the semiconductor substrate, such as quartz and silicon carbide, and may include an isothermal or near isothermal cavity that may be heated to temperatures as high as 1200 degrees C. Process gases may be injected through a plurality of ports, and are capable of achieving a fine level of distribution control of the gas components, including the film source gas, dopant source gas, and carrier gas. The gas supply system includes additional methods of delivering gas to the process cavity, such as through temperature measurement devices, and through a showerhead.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: June 7, 2005
    Assignee: Mattson Technology, Inc.
    Inventors: Kristian E. Johnsgard, David E. Sallows, Daniel L. Messineo, Robert D. Mailho, Mark W. Johnsgard
  • Publication number: 20030124820
    Abstract: Systems and methods for epitaxial deposition. The reactor includes a hot wall process cavity enclosed by a heater system, a thermal insulation system, and chamber walls. The walls of the process cavity may comprises a material having a substantially similar coefficient thermal expansion as the semiconductor substrate, such as quartz and silicon carbide, and may include an isothermal or near isothermal cavity that may be heated to temperatures as high as 1200 degrees C. Process gases may be injected through a plurality of ports, and are capable of achieving a fine level of distribution control of the gas components, including the film source gas, dopant source gas, and carrier gas. The gas supply system includes additional methods of delivering gas to the process cavity, such as through temperature measurement devices, and through a showerhead. In one embodiment of the present invention, the system is capable of utilizing silane as a silicon source gas.
    Type: Application
    Filed: April 10, 2002
    Publication date: July 3, 2003
    Inventors: Kristian E. Johnsgard, David E. Sallows, Daniel L. Messineo, Robert D. Mailho, Mark W. Johnsgard
  • Publication number: 20020100753
    Abstract: A resistive heater comprising a doped ceramic heating element embedded either partially or completely within a matrix of undoped ceramic material. The ceramic may be silicon carbide, and the dopant may be nitrogen. Many of the advantages of the present heater stem from the fact that the materials comprising the heating elements and the matrix material surrounding those elements have substantially the same coefficient of thermal expansion. In one embodiment, the heater is a monolithic plate that is compact, strong, robust, and low in thermal mass, allowing it to respond quickly to power input variations. The resistive heater may be used in many of the reactors and processing chambers used to fabricate integrated circuits, such as those that deposit epitaxial films, and carry out rapid thermal processing.
    Type: Application
    Filed: November 15, 2001
    Publication date: August 1, 2002
    Inventors: Kristian E. Johnsgard, Daniel L. Messineo, David E. Sallows