Patents by Inventor David F. Arnone

David F. Arnone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8565275
    Abstract: A laser source assembly (210) for generating an assembly output beam (212) includes a first laser source (218A), a second laser source (218B), and a dispersive beam combiner (222). The first laser source (218A) emits a first beam (220A) having a first center wavelength, and the second laser source (218B) emits a second beam (220B) having a second center wavelength that is different than the first center wavelength. The dispersive beam combiner (222) includes a common area 224 that combines the first beam (220A) and the second beam (220B) to provide the assembly output beam (212). The first beam (220A) impinges on the common area (224) at a first beam angle (226A), and the second beam (220B) impinges on the common area (224) at a second beam angle (226B) that is different than the first beam angle (226A). Further, the beams (220A) (220B) that exit from the dispersive beam combiner (222) are substantially coaxial, are fully overlapping, and are co-propagating.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: October 22, 2013
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, David F. Arnone
  • Publication number: 20130221152
    Abstract: A laser source assembly (210) for generating an assembly output beam (212) includes a first laser source (218A), a second laser source (218B), and a dispersive beam combiner (222). The first laser source (218A) emits a first beam (220A) having a first center wavelength, and the second laser source (218B) emits a second beam (220B) having a second center wavelength that is different than the first center wavelength. The dispersive beam combiner (222) includes a common area 224 that combines the first beam (220A) and the second beam (220B) to provide the assembly output beam (212). The first beam (220A) impinges on the common area (224) at a first beam angle (226A), and the second beam (220B) impinges on the common area (224) at a second beam angle (226B) that is different than the first beam angle (226A). Further, the beams (220A) (220B) that exit from the dispersive beam combiner (222) are substantially coaxial, are fully overlapping, and are co-propagating.
    Type: Application
    Filed: July 6, 2011
    Publication date: August 29, 2013
    Inventors: Michael Pushkarsky, David F. Arnone
  • Patent number: 8306077
    Abstract: A laser source assembly (10) for providing an assembly output beam (12) includes a first MIR laser source (352A), a second MIR laser source (352B), and a beam combiner (244). The first MIR laser source (352A) emits a first MIR beam (356A) that is in the MIR range and the second MIR laser source (352B) emits a second MIR beam (356B) that is in the MIR range. Further, the beam combiner (244) spatially combines the first MIR beam (356A) and the second MIR beam (356B) to provide the assembly output beam (12). With this design, a plurality MIR laser sources (352A) (352B) can be packaged in a portable, common module, each of the MIR laser sources (352A) (352B) generates a narrow linewidth, accurately settable MIR beam (356A) (356B), and the MIR beams (356A) (356B) are combined to create a multiple watt assembly output beam (12) having the desired power. The beam combiner (244) can includes a combiner lens (364) and an output optical fiber (366).
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: November 6, 2012
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, Timothy Day, David F. Arnone
  • Publication number: 20120106160
    Abstract: A laser source assembly for providing an assembly output beam includes a first emitter, a second emitter, and a third emitter. The first emitter emits a first beam along a first beam axis that is substantially parallel to and spaced apart from an assembly axis. The second emitter emits a second beam along a second beam axis that is substantially parallel to and spaced apart from the assembly axis. The third emitter emits a third beam along a third beam axis that is substantially parallel to and spaced apart from the assembly axis. The first beam axis, the second beam axis and the third beam axis are positioned spaced apart about and substantially equidistant from the assembly axis.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 3, 2012
    Inventors: Michael Pushkarsky, David F. Arnone, Matt Barre, David P. Caffey, Salvatore F. Crivello, Timothy Day, Kyle Thomas
  • Publication number: 20120068001
    Abstract: A laser source assembly (210) for generating an assembly output beam (212) includes a first laser source (218A), a second laser source (218B), and a dispersive beam combiner (222). The first laser source (218A) emits a first beam (220A) having a first center wavelength, and the second laser source (218B) emits a second beam (220B) having a second center wavelength that is different than the first center wavelength. The dispersive beam combiner (222) includes a common area 224 that combines the first beam (220A) and the second beam (220B) to provide the assembly output beam (212). The first beam (220A) impinges on the common area (224) at a first beam angle (226A), and the second beam (220B) impinges on the common area (224) at a second beam angle (226B) that is different than the first beam angle (226A). Further, the beams (220A) (220B) that exit from the dispersive beam combiner (222) are substantially coaxial, are fully overlapping, and are co-propagating.
    Type: Application
    Filed: July 6, 2011
    Publication date: March 22, 2012
    Inventors: Michael Pushkarsky, David F. Arnone
  • Publication number: 20120057254
    Abstract: A beam director (360) for directing a beam (356, 358) comprises a director base (464), a reflective element (462), a base pivot (474A), an element pivot (470), and a first element fastener (468A). The director base (464) is positioned adjacent to a mounting base (226). A first interface between the director base (464) and the mounting base (226) is in a first interface plane that is orthogonal to a first axis. The base pivot (474A) provides a base pivot axis for selectively rotating the director base (464) and the reflective element (462) relative to the mounting base (226) about the first axis. The element pivot (470) guides the rotation of the reflective element (462) relative to the director base (464) about a second axis that is orthogonal to the first axis. The first element fastener (468A) is selectively movable between a locked position and an unlocked position to selectively inhibit rotation of the reflective element (462) relative to the director base (464) about the second axis.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 8, 2012
    Applicant: Daylight Solutions, Inc.
    Inventors: David F. Arnone, Ken Wallace, Michael Pushkarsky, Jason Sensibaugh, Bradley Charles Steele, Brian Jacob Long, Mark R. Lewis, Gregory Hunt Gates
  • Patent number: 8050307
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 1, 2011
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 8027094
    Abstract: A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 27, 2011
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20110222566
    Abstract: A laser source (10) for emitting an output beam (12) includes a first gain medium (16B) that generates a first beam (16A), a second gain medium (18B) that generates a second beam (18A), a common feedback assembly (28) positioned in the path of the first beam (16A) and the second beam (18), and a control system (32). The common feedback assembly (28) redirects at least a portion of the first beam (16A) back to the first gain medium (16B), and at least a portion of the second beam (18A) back to the second gain medium (18B). The control system (32) selectively and individually directs power to the first gain medium (16B) and the second gain medium (18). Additionally, the common feedback assembly (28) can include a feedback mover (46) that continuously adjusts the angle of incidence of the first beam (16A) and the second beam (18A) on the feedback assembly (28).
    Type: Application
    Filed: March 14, 2011
    Publication date: September 15, 2011
    Inventors: Miles J. Weida, David F. Arnone
  • Publication number: 20110173870
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: DAYLIGHT SOLUTIONS INC.
    Inventors: Timothy Day, David F Arnone
  • Publication number: 20110096800
    Abstract: A laser source (10) for emitting a set of sequential, different wavelength output beams (12) includes a gain medium (16), a feedback assembly (26) and a control system (30). The gain medium (16) includes a first facet (16A), and the gain medium (16) generates a beam (12A) that exits the first facet (16A). The feedback assembly (26) includes a feedback device (40) and a device mover (42). The feedback device (40) is positioned in the path of the beam (12A) that exits the first facet (16A) and the feedback device (40) redirects at least a portion of the beam (12A) back to the gain medium (16). The device mover (42) continuously adjusts an angle of incidence (?) of the beam (12A) on the feedback device (40). The control system (30) selectively directs pulses of power to the gain medium (16) as the device mover (42) is continuously adjusting the angle of incidence (?) of the beam (12A).
    Type: Application
    Filed: December 6, 2010
    Publication date: April 28, 2011
    Inventors: Miles James Weida, Russ Pritchett, David F. Arnone
  • Publication number: 20110080311
    Abstract: A laser source assembly (10) for providing an assembly output beam (12) includes a first MIR laser source (352A), a second MIR laser source (352B), and a beam combiner (241). The first MIR laser source (352A) emits a first MIR beam (356A) that is in the MIR range, and the second MIR laser source (352B) emits a second MIR beam (356B) that is in the MIR range. Further, the first MIR beam (356A) has a first linear polarization and the second MIR beam (356B) has a second linear polarization. The beam combiner (241) combines the first MIR beam (356A) and the second MIR beam (356B) to provide the assembly output beam (12). More specifically, the beam combiner (241) can include a combiner element that reflects light having the second linear polarization and that transmits light having the first linear polarization.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Inventors: Michael Pushkarsky, Timothy Day, David F. Arnone, Thomas Edward Berg
  • Patent number: 7873094
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: January 18, 2011
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 7848382
    Abstract: A laser source (10) for emitting a set of sequential, different wavelength output beams (12) includes a gain medium (16), a feedback assembly (26) and a control system (30). The gain medium (16) includes a first facet (16A), and the gain medium (16) generates a beam (12A) that exits the first facet (16A). The feedback assembly (26) includes a feedback device (40) and a device mover (42). The feedback device (40) is positioned in the path of the beam (12A) that exits the first facet (16A) and the feedback device (40) redirects at least a portion of the beam (12A) back to the gain medium (16). The device mover (42) continuously adjusts an angle of incidence (?) of the beam (12A) on the feedback device (40). The control system (30) selectively directs pulses of power to the gain medium (16) as the device mover (42) is continuously adjusting the angle of incidence (?) of the beam (12A).
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: December 7, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Miles James Weida, Russ Pritchett, David F. Arnone
  • Publication number: 20100243891
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: June 11, 2010
    Publication date: September 30, 2010
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 7796341
    Abstract: A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: September 14, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20100132581
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: January 29, 2010
    Publication date: June 3, 2010
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20100111122
    Abstract: A laser source assembly (10) for providing an assembly output beam (12) includes a first MIR laser source (352A), a second MIR laser source (352B), and a beam combiner (244). The first MIR laser source (352A) emits a first MIR beam (356A) that is in the MIR range and the second MIR laser source (352B) emits a second MIR beam (356B) that is in the MIR range. Further, the beam combiner (244) spatially combines the first MIR beam (356A) and the second MIR beam (356B) to provide the assembly output beam (12). With this design, a plurality MIR laser sources (352A) (352B) can be packaged in a portable, common module, each of the MIR laser sources (352A) (352B) generates a narrow linewidth, accurately settable MIR beam (356A) (356B), and the MIR beams (356A) (356B) are combined to create a multiple watt assembly output beam (12) having the desired power. The beam combiner (244) can includes a combiner lens (364) and an output optical fiber (366).
    Type: Application
    Filed: April 21, 2009
    Publication date: May 6, 2010
    Applicant: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, Timothy Day, David F. Arnone
  • Publication number: 20090268277
    Abstract: A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 29, 2009
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20090262768
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: January 15, 2009
    Publication date: October 22, 2009
    Inventors: Timothy Day, David F. Arnone