Patents by Inventor David Fenwick

David Fenwick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11667577
    Abstract: A method of manufacturing a chamber component for a processing chamber comprises forming a green body using a Y2O3—ZrO2 powder consisting essentially of 55-65 mol % Y2O3 and 35-45 mol % ZrO2; and sintering the green body to produce a sintered ceramic body consisting essentially of one or more phase of Y2O3—ZrO2, the sintered ceramic body consisting essentially of 55-65 mol % Y2O3 and 35-45 mol % ZrO2.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: June 6, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, David Fenwick
  • Publication number: 20230141782
    Abstract: An article has a body having a protective coating. The protective coating is a thin film that includes a metal oxy-fluoride. The metal oxy-fluoride has an empirical formula of MxOyFz, where M is a metal, y has a value of 0.1 to 1.9 times a value of x and z has a value of 0.1 to 3.9 times the value of x. The protective coating has a thickness of 1 to 30 microns and a porosity of less than 0.1%.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 11, 2023
    Inventors: David Fenwick, Chengtsin Lee, Jennifer Y. Sun, Yikai Chen
  • Publication number: 20230077895
    Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
    Type: Application
    Filed: November 10, 2022
    Publication date: March 16, 2023
    Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
  • Patent number: 11572617
    Abstract: An article comprises a body having a protective coating. The protective coating is a thin film that comprises a metal oxy-fluoride. The metal oxy-fluoride has an empirical formula of MxOyFz, where M is a metal, y has a value of 0.1 to 1.9 times a value of x and z has a value of 0.1 to 3.9 times the value of x. The protective coating has a thickness of 1 to 30 microns and a porosity of less than 0.1%.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: February 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: David Fenwick, Chengtsin Lee, Jennifer Y. Sun, Yikai Chen
  • Patent number: 11547030
    Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: January 3, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
  • Patent number: 11540432
    Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: December 27, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
  • Publication number: 20220235458
    Abstract: A method comprises depositing a first layer of aluminum oxide onto a surface of a chamber component via atomic layer deposition (ALD). The method further comprises depositing a second layer of yttrium oxide onto a surface of the chamber component via ALD, depositing a third layer of zirconium oxide onto the surface of the chamber component via ALD, and forming a corrosion and erosion resistant coating comprising a YZrxOy solid state phase of the second layer and the third layer, wherein x and y have values that are based on a number of repetitions of the atomic layer deposition process that are used to deposit the second layer and a number of repetitions of the atomic layer deposition process that are used to deposit the third layer.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: David Fenwick, Jennifer Y. Sun
  • Publication number: 20220157568
    Abstract: Described herein are articles, systems and methods where a plasma resistant coating is deposited onto a surface of an article using an atomic layer deposition (ALD) process. The plasma resistant coating has a first layer and a second layer including a solid solution of Y2O3-ZrO2 and uniformly covers features, such as those having an aspect ratio of length to width of about 3:1 to about 300:1.
    Type: Application
    Filed: November 23, 2021
    Publication date: May 19, 2022
    Inventors: Xiaowei Wu, David Fenwick, Jennifer Y. Sun, Guodong Zhan
  • Patent number: 11326253
    Abstract: A multi-component coating composition for a surface of a semiconductor process chamber component comprising at least one first film layer of a yttrium oxide or a yttrium fluoride coated onto the surface of the semiconductor process chamber component using an atomic layer deposition process and at least one second film layer of an additional oxide or an additional fluoride coated onto the surface of the semiconductor process chamber component using an atomic layer deposition process, wherein the multi-component coating composition is selected from the group consisting of YOxFy, YAlxOy, YZrxOy and YZrxAlyOz.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 10, 2022
    Assignee: Applied Materials, Inc.
    Inventors: David Fenwick, Jennifer Y. Sun
  • Patent number: 11251023
    Abstract: Described herein are articles, systems and methods where a plasma resistant coating is deposited onto a surface of a chamber component using an atomic layer deposition (ALD) process. The plasma resistant coating has a stress relief layer and a layer comprising a solid solution of Y2O3—ZrO2 and uniformly covers features, such as those having an aspect ratio of about 3:1 to about 300:1.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: February 15, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaowei Wu, David Fenwick, Jennifer Y. Sun, Guodong Zhan
  • Patent number: 11198937
    Abstract: A multi-component coating composition for a surface of a semiconductor process chamber component comprising at least one first film layer of a yttrium oxide or a yttrium fluoride coated onto the surface of the semiconductor process chamber component using an atomic layer deposition process and at least one second film layer of an additional oxide or an additional fluoride coated onto the surface of the semiconductor process chamber component using an atomic layer deposition process, wherein the multi-component coating composition is selected from the group consisting of YOxFy, YxAlyO, YxZryO and YxZryAlzO.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: December 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Fenwick, Jennifer Y. Sun
  • Patent number: 11198936
    Abstract: A multi-component coating composition for a surface of a chamber component comprising at least one first film layer of a yttrium oxide coated onto the surface of the chamber component using an atomic layer deposition process and at least one second film layer of zirconium oxide coated onto the surface of the chamber component using an atomic layer deposition process, wherein the multi-component coating comprises YZrxOy.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Fenwick, Jennifer Y. Sun
  • Publication number: 20210230070
    Abstract: A method of manufacturing a chamber component for a processing chamber comprises forming a green body using a Y2O3—ZrO2 powder consisting essentially of 55-65 mol % Y2O3 and 35-45 mol % ZrO2, and sintering the green body to produce a sintered ceramic body consisting essentially of one or more phase of Y2O3—ZrO2, the sintered ceramic body consisting essentially of 55-65 mol % Y2O3 and 35-45 mol % ZrO2.
    Type: Application
    Filed: April 15, 2021
    Publication date: July 29, 2021
    Inventors: Jennifer Y. Sun, David Fenwick
  • Patent number: 11014853
    Abstract: A chamber component for a processing chamber comprises a ceramic body consisting of a sintered ceramic material consisting essentially of one or more phase of Y2O3—ZrO2. The ceramic material consists essentially of 55-65 mol % Y2O3 and 35-45 mol % ZrO2.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: May 25, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jennifer Y. Sun, David Fenwick
  • Patent number: 11008653
    Abstract: A multi-layer coating for a surface of an article comprises a diffusion barrier layer and an erosion resistant layer. The diffusion barrier layer may be a nitride film including but not limited to TiNx, TaNx, Zr3N4, and TiZrxNy. The erosion resistant layer may be a rare oxide film comprising YZrxOy. The diffusion barrier layer and the erosion resistant layer may be deposited on the article's surface using a thin film deposition technique including but not limited to, ALD, PVD, and CVD.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Fenwick, Xiaowei Wu, Jennifer Y. Sun
  • Publication number: 20210123143
    Abstract: Embodiments of the present disclosure relate to articles, coated articles, and methods of coating such articles with a corrosion resistant coating. The corrosion resistant coating can comprise hafnium aluminum oxide. The corrosion resistant coating may be deposited by a non-line of sight deposition, such as atomic layer deposition. Articles that may be coated may include chamber components, such as gas lines.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 29, 2021
    Inventors: David Fenwick, Jennifer Y. Sun, Cheng-Hsuan Chou, Xiao-Ming He
  • Publication number: 20210100087
    Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
    Type: Application
    Filed: June 2, 2020
    Publication date: April 1, 2021
    Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
  • Publication number: 20210100141
    Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.
    Type: Application
    Filed: June 2, 2020
    Publication date: April 1, 2021
    Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
  • Publication number: 20200185200
    Abstract: Described herein are articles, systems and methods where a plasma resistant coating is deposited onto a surface of a chamber component using an atomic layer deposition (ALD) process. The plasma resistant coating has a stress relief layer and a layer comprising a solid solution of Y2O3—ZrO2 and uniformly covers features, such as those having an aspect ratio of about 3:1 to about 300:1.
    Type: Application
    Filed: January 6, 2020
    Publication date: June 11, 2020
    Inventors: Xiaowei Wu, David Fenwick, Jennifer Y. Sun, Guodong Zhan
  • Publication number: 20200140996
    Abstract: An article comprises a body having a coating. The coating comprises a Y—O—F coating or other yttrium-based oxy-fluoride coating generated either by performing a fluorination process on a yttrium-based oxide coating or an oxidation process on a yttrium-based fluorine coating.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Xiaowei Wu, David Fenwick, Guodong Zhan, Jennifer Y. Sun, Michael R. Rice