Patents by Inventor David Folkner

David Folkner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11035744
    Abstract: A sensor system for positioning, orienting, and/or aligning a sensor assembly to a target object are provided. In some embodiments, the sensor system can include a sensor assembly and a control and processing module coupled to the sensor assembly. The control and processing module can be configured to process signals generate by the sensor assembly. The sensor system can include a mounting assembly configured to receive the sensor assembly and to position the sensor assembly relative to a surface of a target object. The mounting assembly can include a retaining element configured to translate along a first axis.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: June 15, 2021
    Assignee: Baker Hughes, a GE Company, LLC
    Inventors: Martin Bucher, David Folkner, Dan Tho Lu, Lysle R. Turnbeaugh, Brian F. Howard
  • Publication number: 20200340867
    Abstract: A sensor system for positioning, orienting, and/or aligning a sensor assembly to a target object are provided. In some embodiments, the sensor system can include a sensor assembly and a control and processing module coupled to the sensor assembly. The control and processing module can be configured to process signals generate by the sensor assembly. The sensor system can include a mounting assembly configured to receive the sensor assembly and to position the sensor assembly relative to a surface of a target object. The mounting assembly can include a retaining element configured to translate along a first axis.
    Type: Application
    Filed: July 15, 2020
    Publication date: October 29, 2020
    Inventors: Martin Bucher, David Folkner, Dan Tho Lu, Lysle R. Turnbeaugh, Brian F. Howard
  • Patent number: 10801901
    Abstract: Systems, methods, and devices for positioning, orienting, and/or aligning a stress sensor assembly are provided. In some embodiments, a sensor assembly can be received within a retaining element of a sensor mounting assembly. The sensor mounting assembly can include the retaining element, an adjustment mechanism, a first member, a second member, and a third member. The adjustment mechanism can allow the sensor assembly to be displaced linearly in a proximal and/or distal direction. The first and second members can be pivotally coupled to enable the sensor assembly to be rotated about a first axis, and the second and third members can be pivotally coupled to allow the sensor assembly to be rotated about a second axis.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 13, 2020
    Assignee: General Electric Company
    Inventors: Martin Bucher, David Folkner, Dan Tho Lu, Lysle Turnbeaugh, Brian F. Howard
  • Patent number: 10684181
    Abstract: A gap compensated torque sensing system and methods for using the same are provided. The system can include a magnetostrictive torque sensor and at least one proximity sensor in communication with a controller. The proximity sensor can be substantially rigidly coupled to a sensor head of the torque sensor, either contained within the sensor head or mounted proximate to the sensor head using a bracket or other coupling mechanism. The torque sensor can sense magnetic flux passing through the target and the proximity sensor can measure a gap between itself and the target. The controller can estimate torque applied to the target from magnetic flux sensed by the torque sensor. The estimated torque can be modified by the gap measurement to compensate for changes in magnetic properties of the target due to variations in the gap. In this manner, the accuracy of the torque measurements can be increased.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: June 16, 2020
    Assignee: Bently Nevada, LLC
    Inventors: Dan Tho Lu, Lam Arthur Campbell, Brian F. Howard, Pekka Tapani Sipila, David Folkner, Lysle Turnbeaugh
  • Patent number: 10677676
    Abstract: Systems, methods, and devices for positioning, orienting, and/or aligning a stress sensor assembly are provided. Raw stress signals, which can correspond to stress in the target, can be generated by detecting a magnetic flux that travels through the target. The raw stress signals can be sensitive to an alignment of the sensor relative to the target. In order to minimize measurement error, the stress sensor can be properly aligned relative to the target prior to taking a stress measurement. Sensor alignment can involve adjusting a yaw, pitch, and/or roll of the sensor, measuring the raw stress signals, attenuating the detected magnetic flux, and measuring the raw stress signals again. When the stress sensor is properly aligned, a change in a size of a gap between the sensor and a surface of a target can result in approximately equal changes in the raw stress signal.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: June 9, 2020
    Assignee: Bently Nevada, LLC
    Inventors: David Folkner, Dan Tho Lu, Lysle Turnbeaugh, Brian F. Howard, Trevor Cowan, Brian Bowlds, David O'Connor
  • Publication number: 20200124485
    Abstract: Systems, methods, and devices for positioning, orienting, and/or aligning a stress sensor assembly are provided. In some embodiments, a sensor assembly can be received within a retaining element of a sensor mounting assembly. The sensor mounting assembly can include the retaining element, an adjustment mechanism, a first member, a second member, and a third member. The adjustment mechanism can allow the sensor assembly to be displaced linearly in a proximal and/or distal direction. The first and second members can be pivotally coupled to enable the sensor assembly to be rotated about a first axis, and the second and third members can be pivotally coupled to allow the sensor assembly to be rotated about a second axis.
    Type: Application
    Filed: June 27, 2019
    Publication date: April 23, 2020
    Applicant: General Electric Company
    Inventors: Martin Bucher, David Folkner, Dan Tho Lu, Lysle Turnbeaugh, Brian F. Howard
  • Publication number: 20190212218
    Abstract: A gap compensated torque sensing system and methods for using the same are provided. The system can include a magnetostrictive torque sensor and at least one proximity sensor in communication with a controller. The proximity sensor can be substantially rigidly coupled to a sensor head of the torque sensor, either contained within the sensor head or mounted proximate to the sensor head using a bracket or other coupling mechanism. The torque sensor can sense magnetic flux passing through the target and the proximity sensor can measure a gap between itself and the target. The controller can estimate torque applied to the target from magnetic flux sensed by the torque sensor. The estimated torque can be modified by the gap measurement to compensate for changes in magnetic properties of the target due to variations in the gap. In this manner, the accuracy of the torque measurements can be increased.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 11, 2019
    Inventors: Dan Tho Lu, Lam Arthur Campbell, Brian F. Howard, Pekka Tapani Sipila, David Folkner, Lysle Turnbeaugh
  • Patent number: 10337934
    Abstract: Systems, methods, and devices for positioning, orienting, and/or aligning a stress sensor assembly are provided. In some embodiments, a sensor assembly can be received within a retaining element of a sensor mounting assembly. The sensor mounting assembly can include the retaining element, an adjustment mechanism, a first member, a second member, and a third member. The adjustment mechanism can allow the sensor assembly to be displaced linearly in a proximal and/or distal direction. The first and second members can be pivotally coupled to enable the sensor assembly to be rotated about a first axis, and the second and third members can be pivotally coupled to allow the sensor assembly to be rotated about a second axis.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: July 2, 2019
    Assignee: General Electric Company
    Inventors: Martin Bucher, David Folkner, Dan Tho Lu, Lysle Turnbeaugh, Brian F. Howard
  • Publication number: 20190072449
    Abstract: Systems, methods, and devices for positioning, orienting, and/or aligning a stress sensor assembly are provided. Raw stress signals, which can correspond to stress in the target, can be generated by detecting a magnetic flux that travels through the target. The raw stress signals can be sensitive to an alignment of the sensor relative to the target. In order to minimize measurement error, the stress sensor can be properly aligned relative to the target prior to taking a stress measurement. Sensor alignment can involve adjusting a yaw, pitch, and/or roll of the sensor, measuring the raw stress signals, attenuating the detected magnetic flux, and measuring the raw stress signals again. When the stress sensor is properly aligned, a change in a size of a gap between the sensor and a surface of a target can result in approximately equal changes in the raw stress signal.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 7, 2019
    Inventors: David Folkner, Dan Tho Lu, Lysle Turnbeaugh, Brian F. Howard, Trevor Cowan, Brian Bowlds, David O'Connor
  • Publication number: 20180340846
    Abstract: Systems, methods, and devices for positioning, orienting, and/or aligning a stress sensor assembly are provided. In some embodiments, a sensor assembly can be received within a retaining element of a sensor mounting assembly. The sensor mounting assembly can include the retaining element, an adjustment mechanism, a first member, a second member, and a third member. The adjustment mechanism can allow the sensor assembly to be displaced linearly in a proximal and/or distal direction. The first and second members can be pivotally coupled to enable the sensor assembly to be rotated about a first axis, and the second and third members can be pivotally coupled to allow the sensor assembly to be rotated about a second axis.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Inventors: Martin Bucher, David Folkner, Dan Tho Lu, Lysle Turnbeaugh, Brian F. Howard