Patents by Inventor David Frendewey

David Frendewey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076613
    Abstract: BANF1, PPP2CA, and ANKLE2 were identified as genes that promote tau aggregation when disrupted. Improved tauopathy models such as cells, tissues, or animals having mutations in or inhibition of expression of BANF1 and/or PPP2CA and/or ANKLE2 are provided. Methods of using such improved tauopathy models for assessing therapeutic candidates for the treatment of a tauopathy, methods of making the improved tauopathy models, and methods of accelerating or exacerbating tau aggregation in a tauopathy model are also provided.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Mathieu Desclaux, John McWhirter, Arijit Bhowmick, David Frendewey, Brian Zambrowicz, Claudia Racioppi
  • Publication number: 20240052365
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 15, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Patent number: 11891618
    Abstract: Non-human animal cells and non-human animals comprising a humanized TTR locus comprising a beta-slip mutation and methods of using such non-human animal cells and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus comprising a beta-slip mutation express a human transthyretin protein or a chimeric transthyretin protein, fragments of which are from human transthyretin. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: February 6, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffery Haines, Keith Crosby, Meghan Drummond Samuelson, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Patent number: 11845957
    Abstract: BANF1, PPP2CA, and ANKLE2 were identified as genes that promote tau aggregation when disrupted. Improved tauopathy models such as cells, tissues, or animals having mutations in or inhibition of expression of BANF1 and/or PPP2CA and/or ANKLE2 are provided. Methods of using such improved tauopathy models for assessing therapeutic candidates for the treatment of a tauopathy, methods of making the improved tauopathy models, and methods of accelerating or exacerbating tau aggregation in a tauopathy model are also provided.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: December 19, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Marine Prissette, Matthew Koss, Mathieu Desclaux, John McWhirter, Arijit Bhowmick, David Frendewey, Brian Zambrowicz, Claudia Racioppi
  • Patent number: 11820997
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: November 21, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20230337645
    Abstract: Nuclease-mediated methods for expanding repeats already present at a genomic locus are provided. Non-human animal genomes, non-human animal cells, and non-human animals comprising a heterologous hexanucleotide repeat expansion sequence inserted at an endogenous C9orf72 locus and methods of making such non-human animal cells and non-human animals through nuclease-mediated repeat expansion are also provided. Methods of using the non-human animal cells or non-human animals to identify therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative disorders associated with repeat expansion at the C9orf72 locus are also provided.
    Type: Application
    Filed: May 12, 2023
    Publication date: October 26, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Daisuke Kajimura, Aarti Sharma-Kanning, Brittany Dubose, Gustavo Droguett, Chia-Jen Siao, Junko Kuno, David Frendewey, Brian Zambrowicz
  • Publication number: 20230332185
    Abstract: Compositions and methods are provided for creating and promoting biallelic targeted modifications to genomes within cells and for producing non-human animals comprising the modified genomes. Also provided are compositions and methods for modifying a genome within a cell that is heterozygous for an allele to become homozygous for that allele. The methods make use of Cas proteins and two or more guide RNAs that target different locations within the same genomic target locus. Also provided are methods of identifying cells with modified genomes.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 19, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Ka-Man Venus Lai, Wojtek Auerbach, Gustavo Droguett, Anthony Gagliardi, David M. Valenzuela, Vera Voronina, Lynn Macdonald, Andrew J. Murphy, George D. Yancopoulos
  • Patent number: 11697828
    Abstract: Compositions and methods are provided for creating and promoting biallelic targeted modifications to genomes within cells and for producing non-human animals comprising the modified genomes. Also provided are compositions and methods for modifying a genome within a cell that is heterozygous for an allele to become homozygous for that allele. The methods make use of Cas proteins and two or more guide RNAs that target different locations within the same genomic target locus. Also provided are methods of identifying cells with modified genomes.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 11, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: David Frendewey, Ka-Man Venus Lai, Wojtek Auerbach, Gustavo Droguett, Anthony Gagliardi, David M. Valenzuela, Vera Voronina, Lynn Macdonald, Andrew J. Murphy, George D. Yancopoulos
  • Patent number: 11690362
    Abstract: Nuclease-mediated methods for expanding repeats already present at a genomic locus are provided. Non-human animal genomes, non-human animal cells, and non-human animals comprising a heterologous hexanucleotide repeat expansion sequence inserted at an endogenous C9orf72 locus and methods of making such non-human animal cells and non-human animals through nuclease-mediated repeat expansion are also provided. Methods of using the non-human animal cells or non-human animals to identify therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative disorders associated with repeat expansion at the C9orf72 locus are also provided.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 4, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Daisuke Kajimura, Aarti Sharma-Kanning, Brittany Dubose, Gustavo Droguett, Chia-Jen Siao, Junko Kuno, David Frendewey, Brian Zambrowicz
  • Publication number: 20230189771
    Abstract: Genetically modified non-human animals are provided that exhibit a functional lack of one or more IncRNAs. Methods and compositions for disrupting, deleting, and/or replacing IncRNA-encoding sequences are provided. Genetically modified mice that age prematurely are provided. Also provided are cells, tissues and embryos that are genetically modified to comprise a loss-of-function of one or more IncRNAs.
    Type: Application
    Filed: November 16, 2022
    Publication date: June 22, 2023
    Inventors: Ka-Man Venus Lai, Guochun Gong, John Rinn, David Frendewey, David M. Valenzuela
  • Publication number: 20230114649
    Abstract: The disclosure relates to double stranded ribonucleic acid (dsRNAi) agents and compositions targeting a human chromosome 9 open reading frame 72 (C9orf72) gene, as well as methods of inhibiting expression of a C9orf72 gene and methods of treating subjects having a C9orf72-associated disease or disorder, e.g., C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia or Huntington-Like Syndrome Due To C9orf72 Expansions, using such dsRNAi agents and compositions.
    Type: Application
    Filed: June 9, 2022
    Publication date: April 13, 2023
    Inventors: Elane Fishilevich, Stuart Milstein, Kirk Brown, Tracy Zimmermann, James D. McIninch, David Frendewey, Eric Chiao, Aarti Sharma-Kanning, Anthony Gagliardi, Gustavo Droguett, Brittany Dubose, Brian Zambrowicz
  • Publication number: 20230078551
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized TTR locus and methods of using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized TTR locus express a human transthyretin protein or a chimeric transthyretin protein, fragments of which are from human transthyretin. Methods are provided for using such non-human animals comprising a humanized TTR locus to assess in vivo efficacy of human-TTR-targeting reagents such as nuclease agents designed to target human TTR. Methods are also provided for making such non-human animals comprising a humanized TTR locus.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 16, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Meghan Drummond Samuelson, Jeffery Haines, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Patent number: 11547100
    Abstract: Genetically modified non-human animals are provided that exhibit a functional lack of one or more lncRNAs. Methods and compositions for disrupting, deleting, and/or replacing lncRNA-encoding sequences are provided. Genetically modified mice that age prematurely are provided. Also provided are cells, tissues and embryos that are genetically modified to comprise a loss-of-function of one or more lncRNAs.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: January 10, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Ka-Man Venus Lai, Guochun Gong, John Rinn, David Frendewey, David M. Valenzuela
  • Publication number: 20220167600
    Abstract: Methods and compositions are provided for generating antigen-binding proteins against a foreign antigen of interest.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 2, 2022
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Vera Voronina, Lynn Macdonald, Marine Prissette, Ka-Man Venus Lai, Ashok Badithe, Andrew J. Murphy, Gustavo Droguett, David Frendewey, Brian Zambrowicz
  • Publication number: 20210261985
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 26, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Patent number: 11021719
    Abstract: Methods and compositions are provided for assessing CRISPR/Cas-mediated non-homologous end joining (NHEJ) activity and/or CRISPR/Cas-induced recombination of a target genomic locus with an exogenous donor nucleic acid in vivo or ex vivo. The methods and compositions employ non-human animals comprising a CRISPR reporter such as a genomically integrated CRISPR reporter for detecting and measuring targeted excision of a sequence between two CRISPR/Cas nuclease cleavage sites or disruption of a sequence near a CRISPR/Cas nuclease cleavage site and/or measuring CRISPR/Cas-induced recombination of the CRISPR reporter with an exogenous donor nucleic acid to convert the coding sequence for a first reporter protein to the coding sequence for a different second reporter protein. Methods and compositions are also provided for making and using these non-human animals.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 1, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Guochun Gong, Charleen Hunt, Susannah Brydges, Suzanne Hartford, David Frendewey, Brian Zambrowicz, Andrew J. Murphy
  • Publication number: 20210130846
    Abstract: Compositions and methods are provided for making rat pluripotent and totipotent cells, including rat embryonic stem (ES) cells. Compositions and methods for improving efficiency or frequency of germline transmission of genetic modifications in rats are provided. Such methods and compositions comprise an in vitro culture comprising a feeder cell layer and a population of rat ES cells or a rat ES cell line, wherein the in vitro culture conditions maintain pluripotency of the ES cell and comprises a media having mouse leukemia inhibitory factor (LIF) or an active variant or fragment thereof. Various methods of establishing such rat ES cell lines are further provided. Methods of selecting genetically modified rat ES cells are also provided, along with various methods to generate a transgenic rat from the genetically modified rat ES cells provided herein. Various kits and articles of manufacture are further provided.
    Type: Application
    Filed: December 10, 2020
    Publication date: May 6, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffrey D. Lee, Wojtek Auerbach, David Heslin, David Frendewey, Ka-Man Venus Lai, David M. Valenzuela
  • Publication number: 20210112788
    Abstract: Methods and compositions are provided for generating F0 fertile XY female animals. The methods and compositions involve making XY pluripotent or totipotent animal cells, in vitro cell cultures, or embryos that are capable of producing a fertile female XY animal in an F0 generation. Such cells, embryos, and animals can be made by silencing a region of the Y chromosome. Optionally, the cells can also be cultured in feminizing medium such as a low-osmolality medium and/or can be modified to decrease the level and/or activity of an Sry protein. Methods and compositions are also provided for silencing a region of the Y chromosome in an XY pluripotent or totipotent animal cell, or in vitro cell cultures, embryos, or animals derived therefrom, by maintaining an XY pluripotent or totipotent animal cell in a feminizing medium.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 22, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Jennifer Schmahl, David Frendewey, Junko Kuno, Chia-Jen Siao, Gustavo Droguett, Yu Bai, Wojtek Auerbach
  • Publication number: 20210024953
    Abstract: Methods and compositions are provided for generating targeted genetic modifications on the Y chromosome or a challenging target locus. Compositions include an in vitro culture comprising an XY pluripotent and/or totipotent animal cell (i.e., XY ES cells or XY iPS cells) having a modification that decreases the level and/or activity of an Sry protein; and, culturing these cells in a medium that promotes development of XY F0 fertile females. Such compositions find use in various methods for making a fertile female XY non-human mammal in an F0 generation.
    Type: Application
    Filed: August 31, 2020
    Publication date: January 28, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Gustavo Droguett, Anthony Gagliardi, Junko Kuno, Wojtek Auerbach, David Valenzuela
  • Patent number: 10893666
    Abstract: Methods and compositions are provided for generating F0 fertile XY female animals. The methods and compositions involve making XY pluripotent or totipotent animal cells, in vitro cell cultures, or embryos that are capable of producing a fertile female XY animal in an F0 generation. Such cells, embryos, and animals can be made by silencing a region of the Y chromosome. Optionally, the cells can also be cultured in feminizing medium such as a low-osmolality medium and/or can be modified to decrease the level and/or activity of an Sry protein. Methods and compositions are also provided for silencing a region of the Y chromosome in an XY pluripotent or totipotent animal cell, or in vitro cell cultures, embryos, or animals derived therefrom, by maintaining an XY pluripotent or totipotent animal cell in a feminizing medium.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: January 19, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jennifer Schmahl, David Frendewey, Junko Kuno, Chia-Jen Siao, Gustavo Droguett, Yu Bai, Wojtek Auerbach