Patents by Inventor David Gailani

David Gailani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10577428
    Abstract: Compositions and methods for inhibiting thrombosis without compromising hemostasis are described. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The disclosure further includes pharmaceutical compositions comprising the disclosed anti-factor XI monoclonal antibodies, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: March 3, 2020
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, Stephen Raymond Hanson, David Gailani
  • Publication number: 20180355057
    Abstract: Compositions and methods for inhibiting thrombosis without compromising hemostasis are described. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The disclosure further includes pharmaceutical compositions comprising the disclosed anti-factor XI monoclonal antibodies, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 13, 2018
    Applicants: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, Stephen Raymond Hanson, David Gailani
  • Publication number: 20170204195
    Abstract: Compositions and methods for inhibiting thrombosis without compromising hemostasis are described. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The disclosure further includes pharmaceutical compositions comprising the disclosed anti-factor XI monoclonal antibodies, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 20, 2017
    Applicants: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, Stephen Raymond Hanson, David Gailani
  • Patent number: 9637550
    Abstract: Disclosed herein are monoclonal antibodies specific for factor XI (fXI) that prevent activation of fXI by factor XIIa (fXIIa). The monoclonal antibodies are universal fXI antibodies, capable of binding all mammalian species tested. The anti-fXI monoclonal antibodies prolong clotting time in mammalian plasmas. Moreover, administration of the fXI monoclonal antibodies disclosed herein results in inhibition of thrombosis without altering hemostasis in animal models of thrombosis. Thus, provided herein are monoclonal antibodies specific for fXI that block activation of fXI by fXIIa, compositions and immunoconjugates comprising such antibodies and their methods of use.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: May 2, 2017
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, David Gailani
  • Patent number: 9636399
    Abstract: Compositions and methods for inhibiting thrombosis without compromising hemostasis are described. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The disclosure further includes pharmaceutical compositions comprising the disclosed anti-factor XI monoclonal antibodies, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: May 2, 2017
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, Stephen Raymond Hanson, David Gailani
  • Patent number: 9574013
    Abstract: Provided are antibodies that selectively bind to and inhibit activation of coagulation factor XII. Methods of treatment employing these antibodies are described herein.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: February 21, 2017
    Assignees: VANDERBILT UNIVERSITY, ARONORA, INC., OREGON HEALTH & SCIENCE UNIVERSITY
    Inventors: Andras Gruber, David Gailani, Philberta Leung, Anton Matafonov
  • Publication number: 20150322163
    Abstract: Compositions and methods for inhibiting thrombosis without compromising hemostasis are described. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The disclosure further includes pharmaceutical compositions comprising the disclosed anti-factor XI monoclonal antibodies, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 12, 2015
    Applicants: VANDERBILT UNIVERSITY, OREGON HEALTH & SCIENCE UNIVERSITY
    Inventors: Andras Gruber, Erik I. Tucker, Stephen Raymond Hanson, David Gailani
  • Publication number: 20150315292
    Abstract: Provided are antibodies that selectively bind to and inhibit activation of coagulation factor XII. Methods of treatment employing these antibodies are described herein.
    Type: Application
    Filed: December 6, 2013
    Publication date: November 5, 2015
    Inventors: Andras GRUBER, David GAILANI, Philberta LEUNG, Anton MATAFONOV
  • Patent number: 9125895
    Abstract: The present invention relates to compositions and methods for inhibiting thrombosis without compromising hemostasis. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The invention further includes pharmaceutical compositions comprising the anti-factor XI monoclonal antibodies of the invention, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: September 8, 2015
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, Stephen Raymond Hanson, David Gailani
  • Publication number: 20150093395
    Abstract: Disclosed herein are monoclonal antibodies specific for factor XI (fXI) that prevent activation of fXI by factor XIIa (fXIIa). The monoclonal antibodies are universal fXI antibodies, capable of binding all mammalian species tested. The anti-fXI monoclonal antibodies prolong clotting time in mammalian plasmas. Moreover, administration of the fXI monoclonal antibodies disclosed herein results in inhibition of thrombosis without altering hemostasis in animal models of thrombosis. Thus, provided herein are monoclonal antibodies specific for fXI that block activation of fXI by fXIIa, compositions and immunoconjugates comprising such antibodies and their methods of use.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 2, 2015
    Applicants: VANDERBILT UNIVERSITY, OREGON HEALTH & SCIENCE UNIVERSITY
    Inventors: Andras Gruber, Erik I. Tucker, David Gailani
  • Patent number: 8940883
    Abstract: Disclosed herein are monoclonal antibodies specific for factor XI (fXI) that prevent activation of fXI by factor XIIa (fXIIa). The monoclonal antibodies are universal fXI antibodies, capable of binding all mammalian species tested. The anti-fXI monoclonal antibodies prolong clotting time in mammalian plasmas. Moreover, administration of the fXI monoclonal antibodies disclosed herein results in inhibition of thrombosis without altering hemostasis in animal models of thrombosis. Thus, provided herein are monoclonal antibodies specific for fXI that block activation of fXI by fXIIa, compositions and immunoconjugates comprising such antibodies and their methods of use.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: January 27, 2015
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, David Gailani
  • Publication number: 20140322219
    Abstract: The present invention relates to compositions and methods for inhibiting thrombosis without compromising hemostasis. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The invention further includes pharmaceutical compositions comprising the anti-factor XI monoclonal antibodies of the invention, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 30, 2014
    Applicants: Vanderbilt University, Oregon Health & Science University
    Inventors: Andras Gruber, Erik I. Tucker, Stephen Raymond Hanson, David Gailani
  • Patent number: 8399648
    Abstract: The present invention relates to compositions and methods for inhibiting thrombosis without compromising hemostasis. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The invention further includes pharmaceutical compositions comprising the anti-factor XI monoclonal antibodies of the invention, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 19, 2013
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik Ian Tucker, Stephen Raymond Hanson, David Gailani
  • Patent number: 8388959
    Abstract: Disclosed herein are monoclonal antibodies specific for factor XI (fXI) that prevent activation of fXI by factor XIIa (fXIIa). The monoclonal antibodies are universal fXI antibodies, capable of binding all mammalian species tested. The anti-fXI monoclonal antibodies prolong clotting time in mammalian plasmas. Moreover, administration of the fXI monoclonal antibodies disclosed herein results in inhibition of thrombosis without altering hemostasis in animal models of thrombosis. Thus, provided herein are monoclonal antibodies specific for fXI that block activation of fXI by fXIIa, compositions and immunoconjugates comprising such antibodies and their methods of use.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 5, 2013
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik I. Tucker, David Gailani
  • Publication number: 20120276112
    Abstract: The present invention relates to compositions and methods for inhibiting thrombosis without compromising hemostasis. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The invention further includes pharmaceutical compositions comprising the anti-factor XI monoclonal antibodies of the invention, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: April 13, 2012
    Publication date: November 1, 2012
    Inventors: Andras Gruber, Erik Ian Tucker, Stephen Raymond Hanson, David Gailani
  • Patent number: 8236316
    Abstract: The present invention relates to compositions and methods for inhibiting thrombosis without compromising hemostasis. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The invention further includes pharmaceutical compositions comprising the anti-factor XI monoclonal antibodies of the invention, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 7, 2012
    Assignees: Oregon Health & Science University, Vanderbilt University
    Inventors: Andras Gruber, Erik Ian Tucker, Stephen Raymond Hanson, David Gailani
  • Publication number: 20110250207
    Abstract: Disclosed herein are monoclonal antibodies specific for factor XI (fXI) that prevent activation of fXI by factor XIIa (fXIIa). The monoclonal antibodies are universal fXI antibodies, capable of binding all mammalian species tested. The anti-fXI monoclonal antibodies prolong clotting time in mammalian plasmas. Moreover, administration of the fXI monoclonal antibodies disclosed herein results in inhibition of thrombosis without altering hemostasis in animal models of thrombosis. Thus, provided herein are monoclonal antibodies specific for fXI that block activation of fXI by fXIIa, compositions and immunoconjugates comprising such antibodies and their methods of use.
    Type: Application
    Filed: December 18, 2009
    Publication date: October 13, 2011
    Inventors: Andras Gruber, Erik I. Tucker, David Gailani
  • Publication number: 20110020349
    Abstract: The present invention relates to compositions and methods for inhibiting thrombosis without compromising hemostasis. Compositions include anti-factor XI monoclonal antibodies (aXIMabs) capable of binding to an epitope on the heavy chain of human FXI, particularly the A3 domain of the heavy chain of human FXI. Compositions also include epitope-binding fragments, variants, and derivatives of the monoclonal antibodies, cell lines producing these antibody compositions, and isolated nucleic acid molecules encoding the amino acid sequences of the antibodies. The invention further includes pharmaceutical compositions comprising the anti-factor XI monoclonal antibodies of the invention, or epitope-binding fragments, variants, or derivatives thereof, in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: November 21, 2008
    Publication date: January 27, 2011
    Inventors: Andras Gruber, Erik Ian Tucker, Stephen Raymond Hanson, David Gailani