Patents by Inventor David J. Eyre

David J. Eyre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959132
    Abstract: Methods and devices are provided for simultaneously amplifying a plurality of sample wells for a predetermined amount of amplification, detecting whether amplification has occurred in a first set of the wells, amplifying for an additional amount of amplification and detecting whether amplification has occurred in a second set of the wells. Methods are also provided for analyzing a target nucleic acid sequence using melt curves that were generated in a plurality of amplification cycles.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: April 16, 2024
    Assignee: BioFire Diagnostics, LLC
    Inventors: Randy P. Rasmussen, Robert John Crisp, Andrew Clinton Hemmert, Elizabeth Barker Campbell, Thomas Charles Robbins, David J. Eyre
  • Publication number: 20210277450
    Abstract: Methods and devices are provided for simultaneously amplifying a plurality of sample wells for a predetermined amount of amplification, detecting whether amplification has occurred in a first set of the wells, amplifying for an additional amount of amplification and detecting whether amplification has occurred in a second set of the wells. Methods are also provided for analyzing a target nucleic acid sequence using melt curves that were generated in a plurality of amplification cycles.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Randy P. Rasmussen, Robert John Crisp, Andrew Clinton Hemmert, Elizabeth Barker Campbell, Thomas Charles Robbins, David J. Eyre
  • Patent number: 11041193
    Abstract: Methods and devices are provided for simultaneously amplifying a plurality of sample wells for a predetermined amount of amplification, detecting whether amplification has occurred in a first set of the wells, amplifying for an additional amount of amplification and detecting whether amplification has occurred in a second set of the wells. Methods are also provided for analyzing a target nucleic acid sequence using melt curves that were generated in a plurality of amplification cycles.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: June 22, 2021
    Assignee: BioFire Diagnostics, LLC
    Inventors: Randy P. Rasmussen, Robert John Crisp, Andrew Clinton Hemmert, Elizabeth Barker Campbell, Thomas Charles Robbins, David J. Eyre
  • Publication number: 20180320220
    Abstract: Methods and devices are provided for simultaneously amplifying a plurality of sample wells for a predetermined amount of amplification, detecting whether amplification has occurred in a first set of the wells, amplifying for an additional amount of amplification and detecting whether amplification has occurred in a second set of the wells. Methods are also provided for analyzing a target nucleic acid sequence using melt curves that were generated in a plurality of amplification cycles.
    Type: Application
    Filed: July 17, 2018
    Publication date: November 8, 2018
    Inventors: Randy P. Rasmussen, Robert John Crisp, Andrew Clinton Hemmert, Elizabeth Barker Campbell, Thomas Charles Robbins, David J. Eyre
  • Patent number: 10053726
    Abstract: Methods and devices are provided for simultaneously amplifying a plurality of sample wells for a predetermined amount of amplification, detecting whether amplification has occurred in a first set of the wells, amplifying for an additional amount of amplification and detecting whether amplification has occurred in a second set of the wells. Methods are also provided for analyzing a target nucleic acid sequence using melt curves that were generated in a plurality of amplification cycles.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: August 21, 2018
    Assignee: BioFire Diagnostics, LLC
    Inventors: Randy P. Rasmussen, Robert John Crisp, Andrew Clinton Hemmert, Elizabeth Barker Campbell, Thomas Charles Robbins, David J. Eyre
  • Publication number: 20150232916
    Abstract: Methods and devices are provided for simultaneously amplifying a plurality of sample wells for a predetermined amount of amplification, detecting whether amplification has occurred in a first set of the wells, amplifying for an additional amount of amplification and detecting whether amplification has occurred in a second set of the wells. Methods are also provided for analyzing a target nucleic acid sequence using melt curves that were generated in a plurality of amplification cycles.
    Type: Application
    Filed: September 9, 2013
    Publication date: August 20, 2015
    Inventors: Randy P. Rasmussen, Robert John Crisp, Andrew Clinton Hemmert, Elizabeth Barker Campbell, Thomas Charles Robbins, David J. Eyre
  • Patent number: 7630837
    Abstract: The present invention is directed to a nucleic acid quantification kit and method for determining the initial concentration or mass fraction of a target nucleic acid present in a sample. Illustrative embodiments include real-time competitive quantitative polymerase chain reaction (PCR) to determine the copy number or mass fraction of a target nucleic acid sequence in a sample and use of a thermodynamically based signal processing algorithm, with or without PCR, to provide mass fraction information.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: December 8, 2009
    Assignees: Idaho Technology, Inc., University of Utah Research Foundation
    Inventors: David J. Eyre, Randy P. Rasmussen, Brian E. Caplin, Wade R. Stevenson, Deepika Marine deSilva
  • Patent number: 7373253
    Abstract: A method and device are described for analyzing a sample for the presence of a nucleic acid wherein the sample is amplified, illustratively using PCR, in the presence of a fluorescent probe capable of providing a signal related to the quantity of nucleic acid present. A nucleic acid sample is amplified in the presence of the fluorescent entity, and the fluorescence intensity is measured at each of a plurality of amplification cycles. Scores are obtained from various tests performed on the fluorescence data, and the scores are used to determine whether the nucleic acid is present in the sample.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: May 13, 2008
    Assignee: Idaho Technology
    Inventor: David J. Eyre
  • Patent number: 6730501
    Abstract: A method and device are described for analyzing a sample for the presence of an analyte wherein the analyte is contacted with a substrate to effect a measurable change selected from the group consisting of the quantity of the analyte, the quantity of the substrate, and the quantity of an optical or physical change to the substrate, wherein the analyte is contacted with the substrate for a predetermined time period, to generate a signal related to the measurable change. Scores are obtained from various tests performed on the signal data, and the scores are used to determine whether the substrate is present in the sample.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: May 4, 2004
    Assignee: University of Utah Research Foundation
    Inventors: David J. Eyre, Carl T. Wittwer
  • Publication number: 20030165867
    Abstract: A method and device are described for analyzing a sample for the presence of a nucleic acid wherein the sample is amplified, illustratively using PCR, in the presence of a fluorescent probe capable of providing a signal related to the quantity of nucleic acid present. A nucleic acid sample is amplified in the presence of the fluorescent entity, and the fluorescence intensity is measured at each of a plurality of amplification cycles. Scores are obtained from various tests performed on the fluorescence data, and the scores are used to determine whether the nucleic acid is present in the sample.
    Type: Application
    Filed: February 12, 2002
    Publication date: September 4, 2003
    Inventors: David J. Eyre, Carl T. Wittwer
  • Publication number: 20030157498
    Abstract: A method and device are described for analyzing a sample for the presence of an analyte wherein the analyte is contacted with a substrate to effect a measurable change selected from the group consisting of the quantity of the analyte, the quantity of the substrate, and the quantity of an optical or physical change to the substrate, wherein the analyte is contacted with the substrate for a predetermined time period, to generate a signal related to the measurable change. Scores are obtained from various tests performed on the signal data, and the scores are used to determine whether the substrate is present in the sample.
    Type: Application
    Filed: April 8, 2002
    Publication date: August 21, 2003
    Inventors: David J. Eyre, Carl T. Wittwer
  • Publication number: 20030104438
    Abstract: The present invention is directed to a nucleic acid quantification kit and method for determining the initial concentration or mass fraction of a target nucleic acid present in a sample. Illustrative embodiments include real-time competitive quantitative polymerase chain reaction (PCR) to determine the copy number or mass fraction of a target nucleic acid sequence in a sample and use of a thermodynamically based signal processing algorithm, with or without PCR, to provide mass fraction information.
    Type: Application
    Filed: August 29, 2002
    Publication date: June 5, 2003
    Inventors: David J. Eyre, Randy P. Rasmussen, Brain E. Caplin, Wade R. Stevenson, Deepika Marine deSilva