Patents by Inventor David James Shecterle

David James Shecterle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8864952
    Abstract: Embodiments of apparatuses and methods for separating a paraffin isomerization-zone effluent are provided. In one example, an apparatus comprises a DIB column configured for fractionating the paraffin isomerization-zone effluent to form a branched C4 hydrocarbon-rich stream. The DIB column comprises a vessel. The vessel comprises a cylindrical wall that extends vertically and that encloses an internal cylindrical volume having a lower portion extending to an upper portion. An internal swage is disposed in the lower portion of the internal cylindrical volume. A plurality of fractionation trays includes an upper fractionation tray that is disposed in the internal cylindrical volume above the internal swage and a lower fractionation tray that is disposed in the internal swage. The lower fractionation tray has a smaller diameter than the upper fractionation tray.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventors: Anurag Sinha, Manoj Kumar, David James Shecterle, Douglas A. Becci
  • Patent number: 8841499
    Abstract: Embodiments of methods and apparatuses for isomerization of paraffins are provided. In one example, a method comprises the steps of compressing a C4? hydrocarbons-containing stabilizer vapor stream to form a compressed C4? hydrocarbons-containing stabilizer stream. A C4 hydrocarbons-containing feed stream that comprises unbranched C4 hydrocarbons is contacted with a chloride-promoted isomerization catalyst in the presence of hydrogen to form a branched C4 hydrocarbons-containing reaction zone effluent. At least a portion of the compressed C4? hydrocarbons-containing stabilizer stream is combined with the branched C4 hydrocarbons-containing reaction zone effluent to form a C4 hydrocarbons-containing combined stream. The C4 hydrocarbons-containing combined stream is separated into a C3? hydrocarbons-containing stabilizer vapor stream and a C4 hydrocarbons-rich product stream that comprises branched C4 hydrocarbons.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: September 23, 2014
    Assignee: UOP LLC
    Inventors: Manoj Kumar, David James Shecterle
  • Publication number: 20140171717
    Abstract: Embodiments of apparatuses and methods for separating a paraffin isomerization-zone effluent are provided. In one example, an apparatus comprises a DIB column configured for fractionating the paraffin isomerization-zone effluent to form a branched C4 hydrocarbon-rich stream. The DIB column comprises a vessel. The vessel comprises a cylindrical wall that extends vertically and that encloses an internal cylindrical volume having a lower portion extending to an upper portion. An internal swage is disposed in the lower portion of the internal cylindrical volume. A plurality of fractionation trays includes an upper fractionation tray that is disposed in the internal cylindrical volume above the internal swage and a lower fractionation tray that is disposed in the internal swage. The lower fractionation tray has a smaller diameter than the upper fractionation tray.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: UOP LLC
    Inventors: Anurag Sinha, Manoj Kumar, David James Shecterle, Douglas A. Becci
  • Publication number: 20140128649
    Abstract: Embodiments of methods and apparatuses for isomerization of paraffins are provided. In one example, a method comprises the steps of compressing a C4? hydrocarbons-containing stabilizer vapor stream to form a compressed C4? hydrocarbons-containing stabilizer stream. A C4 hydrocarbons-containing feed stream that comprises unbranched C4 hydrocarbons is contacted with a chloride-promoted isomerization catalyst in the presence of hydrogen to form a branched C4hydrocarbons-containing reaction zone effluent. At least a portion of the compressed C4? hydrocarbons-containing stabilizer stream is combined with the branched C4 hydrocarbons-containing reaction zone effluent to form a C4 hydrocarbons-containing combined stream. The C4 hydrocarbons-containing combined stream is separated into a C3? hydrocarbons-containing stabilizer vapor stream and a C4 hydrocarbons-rich product stream that comprises branched C4 hydrocarbons.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: UOP LLC
    Inventors: Manoj Kumar, David James Shecterle
  • Publication number: 20140128647
    Abstract: Methods and apparatuses for reducing an aromatic concentration in a hydrocarbon stream are provided. In an embodiment, a method for reducing an aromatic concentration in a hydrocarbon stream includes saturating aromatics in the hydrocarbon stream to form a low aromatic hydrocarbon stream comprising no more than about 2 weight percent (wt %) aromatics. Further, the method includes passing the low aromatic hydrocarbon stream through an adsorption zone to remove aromatics therefrom to form an aromatic-depleted product stream comprising less than about 10 weight parts per million (wppm) aromatics.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 8, 2014
  • Patent number: 8716544
    Abstract: One exemplary embodiment can be a process for isomerizing a feed stream including one or more C4-C6 hydrocarbons. Generally, the process includes contacting the feed stream in an isomerization reaction zone with an isomerization catalyst at isomerization conditions to produce an isomerization zone effluent; passing at least a portion of the isomerization zone effluent to a stabilizer zone and recovering a stabilizer overhead stream, a bottom stream, and a side-stream; passing at least a portion of the side-stream to a stripper zone; and sending a stripper bottom stream to a C5 splitter zone and passing a stream from the C5 splitter zone to the isomerization reaction zone. Generally, the stabilizer overhead stream can include one or more C5? hydrocarbons, a bottom stream can include at least about 85%, by weight, one or more C6+ hydrocarbons, and a side-stream can include at least about 85%, by weight, one or more C5+ hydrocarbons.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: May 6, 2014
    Assignee: UOP LLC
    Inventor: David James Shecterle
  • Publication number: 20140107382
    Abstract: Methods of and apparatuses for separating a linear hexane stream from a hydrocarbon feed that includes unbranched C4 to C7 hydrocarbons are provided. In an embodiment, a method of separating a linear hexane stream from a hydrocarbon feed including unbranched C4 to C7 hydrocarbons includes isomerizing the hydrocarbon feed in the presence of hydrogen to produce an isomerized hydrocarbon stream that includes branched hydrocarbons and linear hexane. The isomerized hydrocarbon stream is separated into at least an isomerate product stream and a hexane-containing raffinate stream that includes linear hexane. The linear hexane stream is separated from at least a portion of the hexane-containing raffinate stream to produce the linear hexane stream and a hexane-depleted raffinate stream. The linear hexane stream is isolated as an independent product stream.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: UOP LLC
    Inventors: David James Shecterle, Mohamed Shakur
  • Patent number: 8692046
    Abstract: One exemplary embodiment can be a process for isomerizing a feed stream including one or more C4-C6 hydrocarbons. The process may include contacting the feed stream in an isomerization reaction zone with an isomerization catalyst at isomerization conditions to produce an isomerization zone effluent; passing at least a portion of the isomerization zone effluent to a stabilizer zone and recovering a stabilizer overhead stream, a bottom stream, and a stripper feed stream; passing the stripper feed stream to a stripping zone and separating the stripper feed stream into a stripper overhead stream and a stripper bottom stream; and recycling at least a portion of the stripper bottom stream to a deisopentanizer zone and passing a stream from the deisopentanizer zone to the isomerization reaction zone.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventor: David James Shecterle
  • Publication number: 20140094632
    Abstract: Methods and apparatuses for recovering normal hexane from a reformate stream are provided. In one example, a method for recovering normal hexane from a reformate stream includes extracting aromatics from the reformate stream to form an aromatic extract stream and a raffinate stream. In the method, the normal hexane is separated from the raffinate stream to form a normal hexane product stream.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: UOP LLC
    Inventor: David James Shecterle
  • Publication number: 20130261358
    Abstract: Embodiments of methods and apparatuses for isomerization of paraffins are provided. In one example, a method comprises the steps of separating an isomerization effluent into a product stream that comprises branched paraffins and a stabilizer overhead vapor stream that comprises HCl, H2, and C6-hydrocarbons. C6-hydrocarbons are removed from at least a portion of the stabilizer overhead vapor stream to form a HCl and H2-rich stream. An isomerization catalyst is activated using at least a portion of the HCl and H2-rich stream to form a chloride-promoted isomerization catalyst. A paraffin feed stream is contacted with the chloride-promoted isomerization catalyst in the presence of hydrogen for isomerization of the paraffins.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventor: David James Shecterle
  • Publication number: 20130109901
    Abstract: Embodiments of methods and apparatuses for treating a hydrocarbon-containing feed stream are provided. The method comprises the steps of contacting the hydrocarbon-containing feed stream comprising C4, C5, C6, and/or C7 hydrocarbons, water, and contaminants with a Linde Type A molecular sieve at dehydration conditions effective to remove water and form a dehydrated feed stream. The contaminants comprise oxygenates, sulfur compounds, or combinations thereof. The dehydrated feed stream is contacted with a sodium faujisite molecular sieve having a silica/alumina molar ratio of from about 2 to about 2.5 at absorption conditions effective to remove the contaminants and form a dehydrated contaminant-depleted feed stream.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
  • Publication number: 20130096356
    Abstract: Methods and apparatuses for the isomerization and deisohexanizing of a feed are provided. In a method for the isomerization of a feed in an isomerization zone to form an isomerized stream and the deisohexanizing of the isomerized stream in a deisohexanizer zone, heat is exchanged between the isomerization zone and the deisohexanizer zone to raise the temperature of the feed and to reduce the temperature of the deisohexanizer sidecut stream.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: UOP LLC
    Inventors: Laxmikant V. Bharuka, Heidi C. Fraser, David James Shecterle
  • Publication number: 20120184794
    Abstract: One exemplary embodiment can be a process for isomerizing a feed stream including one or more C4-C6 hydrocarbons. Generally, the process includes contacting the feed stream in an isomerization reaction zone with an isomerization catalyst at isomerization conditions to produce an isomerization zone effluent; passing at least a portion of the isomerization zone effluent to a stabilizer zone and recovering a stabilizer overhead stream, a bottom stream, and a side-stream; passing at least a portion of the side-stream to a stripper zone; and sending a stripper bottom stream to a C5 splitter zone and passing a stream from the C5 splitter zone to the isomerization reaction zone. Generally, the stabilizer overhead stream can include one or more C5? hydrocarbons, a bottom stream can include at least about 85%, by weight, one or more C6+ hydrocarbons, and a side-stream can include at least about 85%, by weight, one or more C5+ hydrocarbons.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 19, 2012
    Applicant: UOP, LLC
    Inventor: David James Shecterle