Patents by Inventor David Kammerlander

David Kammerlander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961904
    Abstract: In an example, for manufacturing a semiconductor device, first dopants are implanted through a first surface section of a first surface of a silicon carbide body. A trench is formed that extends from the first surface into the silicon carbide body. The trench includes a first sidewall surface and an opposite second sidewall surface. A spacer mask is formed. The spacer mask covers at least the first sidewall surface. Second dopants are implanted through a portion of a bottom surface of the trench exposed by the spacer mask. The first dopants and the second dopants have a same conductivity type. The first dopants and the second dopants are activated. The first dopants form a doped top shielding region adjoining the second sidewall surface. The second dopants form a doped buried shielding region adjoining the bottom surface.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: April 16, 2024
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ralf Siemieniec, Wolfgang Jantscher, David Kammerlander
  • Patent number: 11876133
    Abstract: A silicon carbide device includes a transistor cell with a source region and a gate electrode. The source region is formed in a silicon carbide body and has a first conductivity type. A first low-resistive ohmic path electrically connects the source region and a doped region of a second conductivity type. The doped region and a floating well of the first conductivity type form a pn junction. A first clamp region having the second conductivity type extends into the floating well. A second low-resistive ohmic path electrically connects the first clamp region and the gate electrode.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: January 16, 2024
    Assignee: Infineon Technologies AG
    Inventors: Joachim Weyers, Franz Hirler, Wolfgang Jantscher, David Kammerlander, Ralf Siemieniec
  • Publication number: 20230261117
    Abstract: A trench junction field effect transistor (trench JFET) includes a mesa region confined by first and second trenches along a first lateral direction. The first and second trenches extend into a semiconductor body from a first surface of the semiconductor body. A mesa channel region of a first conductivity type is confined, along the first lateral direction, by first and second gate regions of a second conductivity type. A first pn junction is defined by the mesa channel region and the first gate region. A second pn junction is defined by the mesa channel region and the second gate region. The mesa channel region includes, along the first lateral direction, first, second and third mesa channel sub-regions having a same extent along the first lateral direction.
    Type: Application
    Filed: February 7, 2023
    Publication date: August 17, 2023
    Inventors: Hans Weber, David Kammerlander, Andreas Riegler
  • Publication number: 20220310838
    Abstract: A semiconductor device is proposed. An example of the semiconductor device includes a semiconductor body having a first main surface. A trench structure extends into the semiconductor body from the first main surface. The trench structure includes a trench electrode structure and a trench dielectric structure. The trench dielectric structure includes a gate dielectric in an upper part of the trench dielectric structure and a gap in a lower part of the trench dielectric structure. The semiconductor device further includes a body region adjoining the gate dielectric at a sidewall of the trench structure in the upper part of the trench dielectric structure. The gate dielectric extends deeper into the semiconductor body along the sidewall than the body region.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 29, 2022
    Inventors: Hans Weber, David Kammerlander, Andreas Riegler
  • Publication number: 20220102487
    Abstract: A transistor cell includes a gate electrode and a source region of a first conductivity type. A drain/drift region is formed in a silicon carbide body. A buried region of the second conductivity type and the drain/drift region form a pn junction. The buried region and a well region form a unipolar junction. A mean net dopant density N2 of the buried region is higher than a mean net dopant density N1 of the well region. A first clamp region of the first conductivity type extends into the well region. A first low-resistive ohmic path electrically connects the first clamp region and the gate electrode. A second clamp region of the first conductivity type extends into the well region. A second low-resistive ohmic path electrically connects the second clamp region and the source region.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 31, 2022
    Inventors: Ralf Siemieniec, Wolfgang Jantscher, David Kammerlander, Dethard Peters, Joachim Weyers
  • Publication number: 20220102549
    Abstract: A silicon carbide device includes a transistor cell with a source region and a gate electrode. The source region is formed in a silicon carbide body and has a first conductivity type. A first low-resistive ohmic path electrically connects the source region and a doped region of a second conductivity type. The doped region and a floating well of the first conductivity type form a pn junction. A first clamp region having the second conductivity type extends into the floating well. A second low-resistive ohmic path electrically connects the first clamp region and the gate electrode.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 31, 2022
    Inventors: Joachim Weyers, Franz Hirler, Wolfgang Jantscher, David Kammerlander, Ralf Siemieniec
  • Publication number: 20220085186
    Abstract: A silicon carbide device includes a silicon carbide body with a trench gate structure that extends from a first surface into the silicon carbide body. A body region is in contact with an active sidewall of the trench gate structure. A source region is in contact with the active sidewall and located between the body region and the first surface. The body region includes a first body portion directly below the source region and distant from the active sidewall. In at least one horizontal plane parallel to the first surface, a dopant concentration in the first body portion is at least 150% of a reference dopant concentration in the body region at the active sidewall and a horizontal extension of the first body portion is at least 20% of a total horizontal extension of the body region.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Ralf Siemieniec, Wolfgang Jantscher, David Kammerlander
  • Publication number: 20210408279
    Abstract: In an example, for manufacturing a semiconductor device, first dopants are implanted through a first surface section of a first surface of a silicon carbide body. A trench is formed that extends from the first surface into the silicon carbide body. The trench includes a first sidewall surface and an opposite second sidewall surface. A spacer mask is formed. The spacer mask covers at least the first sidewall surface. Second dopants are implanted through a portion of a bottom surface of the trench exposed by the spacer mask. The first dopants and the second dopants have a same conductivity type. The first dopants and the second dopants are activated. The first dopants form a doped top shielding region adjoining the second sidewall surface. The second dopants form a doped buried shielding region adjoining the bottom surface.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 30, 2021
    Inventors: Ralf Siemieniec, Wolfgang Jantscher, David Kammerlander
  • Patent number: 11211468
    Abstract: A silicon carbide device includes a silicon carbide body with a trench gate structure that extends from a first surface into the silicon carbide body. A body region is in contact with an active sidewall of the trench gate structure. A source region is in contact with the active sidewall and located between the body region and the first surface. The body region includes a first body portion directly below the source region and distant from the active sidewall. In at least one horizontal plane parallel to the first surface, a dopant concentration in the first body portion is at least 150% of a reference dopant concentration in the body region at the active sidewall and a horizontal extension of the first body portion is at least 20% of a total horizontal extension of the body region.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 28, 2021
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Wolfgang Jantscher, David Kammerlander
  • Publication number: 20200312979
    Abstract: A silicon carbide device includes a silicon carbide body with a trench gate structure that extends from a first surface into the silicon carbide body. A body region is in contact with an active sidewall of the trench gate structure. A source region is in contact with the active sidewall and located between the body region and the first surface. The body region includes a first body portion directly below the source region and distant from the active sidewall. In at least one horizontal plane parallel to the first surface, a dopant concentration in the first body portion is at least 150% of a reference dopant concentration in the body region at the active sidewall and a horizontal extension of the first body portion is at least 20% of a total horizontal extension of the body region.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Ralf Siemieniec, Wolfgang Jantscher, David Kammerlander
  • Publication number: 20180328981
    Abstract: A probe test card for testing semiconductor devices includes a printed circuit board, a pair of electrically conductive probes extending towards one another and protruding away from the printed circuit board with a gap being disposed between ends of the pair of electrically conductive probes, and a coil affixed to and electrically connected to the printed circuit board and disposed directly over the gap. The probe test card is configured to generate a magnetic flux in the gap between the ends of the pair of electrically conductive probes upon the application of a current through the coil.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Clemens Ostermaier, Juergen Bostjancic, Gerhard Raczynski, David Kammerlander, Gerhard Prechtl
  • Patent number: 10126355
    Abstract: A probe test card for testing semiconductor devices includes a printed circuit board, a pair of electrically conductive probes extending towards one another and protruding away from the printed circuit board with a gap being disposed between ends of the pair of electrically conductive probes, and a coil affixed to and electrically connected to the printed circuit board and disposed directly over the gap. The probe test card is configured to generate a magnetic flux in the gap between the ends of the pair of electrically conductive probes upon the application of a current through the coil.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: November 13, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Clemens Ostermaier, Juergen Bostjancic, Gerhard Raczynski, David Kammerlander, Gerhard Prechtl