Patents by Inventor David Kirk Conn

David Kirk Conn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220412212
    Abstract: A method includes receiving a signal having a telemetry portion and a noise portion. The method may also include identifying one or more harmonic frequencies in the signal. The method may also include determining whether the one or more harmonic frequencies are in a predetermined frequency band. The method may also include determining whether a signal-to-noise ratio (SNR) of the signal is below a predetermined SNR threshold. The method may also include generating one or more notifications in response to the determination whether the one or more harmonic frequencies are in the predetermined frequency band and the determination whether the SNR is below the predetermined SNR threshold.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 29, 2022
    Inventors: Liang Sun, Pavel Annenkov, Arnaud Jarrot, David Kirk Conn, Robert Tennent, Richard Hunter
  • Publication number: 20220412211
    Abstract: A method, a non-transitory computer-readable medium, and a computing system are provided for determining a telemetry mode of a signal. A drilling telemetry signal is received from a downhole tool in a wellbore. A transformation is determined based at least partially upon the drilling telemetry signal. Multiple features are extracted based at least partially upon the transformation. A decision region is identified based at least partially upon the features. A telemetry parameter is identified based at least partially upon the decision region. A telemetry mode of the drilling telemetry signal is determined based at least partially upon the telemetry parameter. The drilling telemetry signal is decoded based at least partially upon the telemetry mode.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 29, 2022
    Inventors: Arnaud Jarrot, David Kirk Conn, Pavel Annenkov
  • Patent number: 10844709
    Abstract: A method for configuring transmission signals is disclosed. The method includes receiving a signal from a downhole tool in a wellbore. The signal may include a telemetry portion and a noise portion. The method also includes reproducing the telemetry portion based at least partially on the signal. Further, the method includes subtracting the telemetry portion from the signal. The method includes estimating, based at least partially on the subtraction, the noise portion of the signal. The method also includes altering a transmission configuration of the downhole tool based at least partially on the noise portion of the signal.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: November 24, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Julius Kusuma, Arnaud Jarrot, Adeel Mukhtar, Liang Sun, Robert W. Tennent, David Kirk Conn, Luis Eduardo DePavia
  • Publication number: 20190376384
    Abstract: A method for configuring transmission signals is disclosed. The method includes receiving a signal from a downhole tool in a wellbore. The signal may include a telemetry portion and a noise portion. The method also includes reproducing the telemetry portion based at least partially on the signal. Further, the method includes subtracting the telemetry portion from the signal. The method includes estimating, based at least partially on the subtraction, the noise portion of the signal. The method also includes altering a transmission configuration of the downhole tool based at least partially on the noise portion of the signal.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 12, 2019
    Inventors: Julius Kusuma, Arnaud Jarrot, Adeel Mukhtar, Liang Sun, Robert W. Tennent, David Kirk Conn, Luis Eduardo DePavia
  • Patent number: 10502860
    Abstract: A method for placement of electrodes includes determining spatial distribution of a signal caused by generating an electromagnetic field in an instrument disposed in drill string used to drill a wellbore. The electromagnetic field comprises encoded measurements from at least one sensor associated with the instrument. Voltages induced by noise are measured across at least one pair of spaced apart electrodes placed at a plurality of positions spaced apart from a surface location of the wellbore. A spatial distribution of noise is estimated using the measured voltages. Positions for placement of at least two electrodes are selected using the spatial distribution of signal and the spatial distribution of noise.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: December 10, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Gaelle Jannin, Jiuping Chen, Andrew G. Brooks, David Kirk Conn, Luis Eduardo DePavia, Liang Sun, Michael W. Schwartz, Richard Hunter
  • Patent number: 10487645
    Abstract: A saver sub includes a hollow, tubular body having an upper portion and a lower portion. The upper portion is coupled to a kelly or a top drive, and the lower portion is coupled to a drill string. An insulation layer is positioned between the upper portion and the lower portion.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: November 26, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Luis Eduardo DePavia, David Kirk Conn
  • Patent number: 10422218
    Abstract: A method for configuring transmission signals is disclosed. The method includes receiving a signal from a downhole tool in a wellbore. The signal may include a telemetry portion and a noise portion. The method also includes reproducing the telemetry portion based at least partially on the signal. Further, the method includes subtracting the telemetry portion from the signal. The method includes estimating, based at least partially on the subtraction, the noise portion of the signal. The method also includes altering a transmission configuration of the downhole tool based at least partially on the noise portion of the signal.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: September 24, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Julius Kusuma, Arnaud Jarrot, Adeel Mukhtar, Liang Sun, Robert W. Tennent, David Kirk Conn, Luis Eduardo DePavia
  • Publication number: 20190048714
    Abstract: A method for configuring transmission signals is disclosed. The method includes receiving a signal from a downhole tool in a wellbore. The signal may include a telemetry portion and a noise portion. The method also includes reproducing the telemetry portion based at least partially on the signal. Further, the method includes subtracting the telemetry portion from the signal. The method includes estimating, based at least partially on the subtraction, the noise portion of the signal. The method also includes altering a transmission configuration of the downhole tool based at least partially on the noise portion of the signal.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Inventors: Julius Kusuma, Arnaud Jarrot, Adeel Mukhtar, Liang Sun, Robert W. Tennent, David Kirk Conn, Luis Eduardo DePavia
  • Publication number: 20180335542
    Abstract: A method for placement of electrodes includes determining spatial distribution of a signal caused by generating an electromagnetic field in an instrument disposed in drill string used to drill a wellbore. The electromagnetic field comprises encoded measurements from tromagnetic at least one sensor associated with the instrument. Voltages induced by noise are measured across at least one pair of spaced apart electrodes placed at a plurality of positions spaced apart from a surface location of the wellbore. A spatial distribution of noise is estimated using the measured voltages. Positions for placement of at least two electrodes are selected using the spatial distribution of signal and the spatial distribution of noise.
    Type: Application
    Filed: November 3, 2016
    Publication date: November 22, 2018
    Inventors: Gaelle Jannin, Jiuping Chen, Andrew G. Brooks, David Kirk Conn, Luis Eduardo DePavia, Liang Sun, Michael W. Schwartz, Richard Hunter
  • Patent number: 10113418
    Abstract: A method for configuring transmission signals is disclosed. The method includes receiving a signal from a downhole tool in a wellbore. The signal may include a telemetry portion and a noise portion. The method also includes reproducing the telemetry portion based at least partially on the signal. Further, the method includes subtracting the telemetry portion from the signal. The method includes estimating, based at least partially on the subtraction, the noise portion of the signal. The method also includes altering a transmission configuration of the downhole tool based at least partially on the noise portion of the signal.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: October 30, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Julius Kusuma, Arnaud Jarrot, Adeel Mukhtar, Liang Sun, Robert W. Tennent, David Kirk Conn, Luis Eduardo DePavia
  • Patent number: 10053919
    Abstract: A fluidic modulator in accordance to an aspect includes a body forming a flow aperture between an inlet and an outlet, the flow aperture providing a constriction to a fluid flowing axially from the inlet to the outlet, and a moveable element having a shaft portion disposed through the body and a tip end selectively positionable in the flow aperture to alter the flow aperture.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: August 21, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Stuart Alan Kolbe, Jonathan James, Christopher Paul Reed, David Kirk Conn
  • Publication number: 20180003044
    Abstract: A method for configuring transmission signals is disclosed. The method includes receiving a signal from a downhole tool in a wellbore. The signal may include a telemetry portion and a noise portion. The method also includes reproducing the telemetry portion based at least partially on the signal. Further, the method includes subtracting the telemetry portion from the signal. The method includes estimating, based at least partially on the subtraction, the noise portion of the signal. The method also includes altering a transmission configuration of the downhole tool based at least partially on the noise portion of the signal.
    Type: Application
    Filed: June 15, 2017
    Publication date: January 4, 2018
    Inventors: Julius Kusuma, Arnaud Jarrot, Adeel Mukhtar, Liang Sun, Robert W. Tennent, David Kirk Conn, Luis Eduardo DePavia
  • Patent number: 9835025
    Abstract: A system for drilling a subterranean wellbore includes a bottom hole assembly (BHA) coupled to a downhole end of a drill string. The BHA includes an electronic controller having a processor. The drill string includes downhole and uphole portions with the downhole portion made up of wired drill pipe and the uphole portion made up of non-wired drill pipe. The downhole portion further includes at least one downhole tool or sensor sub in communication with the BHA via the wired drill pipe communication link. Methods for making sensor measurements, downlinking data and/or commands to the BHA, and actuating a downhole tool make use of the system.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: December 5, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Christopher Paul Reed, Steven Hough, John Rasmus, David Kirk Conn, Brian Oliver Clark
  • Publication number: 20170122041
    Abstract: A saver sub includes a hollow, tubular body having an upper portion and a lower portion. The upper portion is coupled to a kelly or a top drive, and the lower portion is coupled to a drill string. An insulation layer is positioned between the upper portion and the lower portion.
    Type: Application
    Filed: June 30, 2016
    Publication date: May 4, 2017
    Inventors: Luis Eduardo DePavia, David Kirk Conn
  • Publication number: 20160237811
    Abstract: A system for drilling a subterranean wellbore includes a bottom hole assembly (BHA) coupled to a downhole end of a drill string. The BHA includes an electronic controller having a processor. The drill string includes downhole and uphole portions with the downhole portion made up of wired drill pipe and the uphole portion made up of non-wired drill pipe. The downhole portion further includes at least one downhole tool or sensor sub in communication with the BHA via the wired drill pipe communication link. Methods for making sensor measurements, downlinking data and/or commands to the BHA, and actuating a downhole tool make use of the system.
    Type: Application
    Filed: February 16, 2015
    Publication date: August 18, 2016
    Inventors: Christopher Paul Reed, Steven Hough, John Rasmus, David Kirk Conn, Brian Oliver Clark
  • Publication number: 20150218937
    Abstract: A system and method for downhole signal enhancement. The system includes a downhole tool having one or more sensors coupled thereto. The one or more sensors may measure internal pressure and one or more parameters selected from the group consisting of external pressure, pressure sensor temperature, weight on bit, torque on bit, bending moment, roll gyro, tangential acceleration, radial acceleration, and axial acceleration. A noise estimator may be coupled to the downhole tool and estimate a downhole noise component in the one or more parameters. A telemetry modulator may be coupled to the downhole tool and generate a signal that includes the estimated downhole noise component and a telemetry component. The downhole noise component in the signal may be reduced based at least partially upon the estimate.
    Type: Application
    Filed: August 27, 2013
    Publication date: August 6, 2015
    Inventors: David Kirk Conn, Lee Garth, Julius Kusuma
  • Publication number: 20150034385
    Abstract: A fluidic modulator in accordance to an aspect includes a body forming a flow aperture between an inlet and an outlet, the flow aperture providing a constriction to a fluid flowing axially from the inlet to the outlet, and a moveable element having a shaft portion disposed through the body and a tip end selectively positionable in the flow aperture to alter the flow aperture.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: Stuart Alan Kolbe, Jonathan James, Christopher Paul Reed, David Kirk Conn
  • Publication number: 20150034165
    Abstract: A fluidic modulator having a body forming a flow aperture between an inlet and an outlet, the flow aperture having a nominal diameter less than the inlet diameter and the outlet diameter whereby the flow aperture provides a constriction to a fluid flowing axially from the inlet to the outlet, and a moveable portion operable to alter the flow aperture. To create a modulated pressure pulse the moveable portion may be for example radially shifted in the flow aperture, rotated in the flow aperture, or the rotation of the moveable portion in the flow aperture may be controlled.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: David Kirk Conn, Christopher Paul Reed, Andrew J. Parry, Alain P. Dorel, Staffan Eriksson, Jonathan James, Stuart Alan Kolbe
  • Publication number: 20150034386
    Abstract: A well system includes a first fluidic modulator (FM) located at the bottom of the tubular string and a repeater fluidic modulator (FM) located in the tubular string between the first FM and the surface, the repeater FM including a body forming a flow aperture between an inlet and an outlet, the flow aperture providing a constriction to a fluid flowing axially through the tubular string, and a moveable portion operable to alter the flow aperture. To create a modulated pressure pulse the moveable portion may be for example radially shifted in the flow aperture, rotated in the flow aperture, or the rotation of the moveable portion in the flow aperture may be controlled.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: Christopher Paul Reed, David Kirk Conn, Stuart Alan Kolbe, Jonathan James
  • Patent number: 8294591
    Abstract: A digital signal processing receiver, a system and/or a method identifies a decoded signal. The receiver, system and/or method extract at least one sequence of one or more symbols from a digital incoming signal to generate an extracted sequence of symbols. The receiver, system and/or method generate a first result based on a comparison of the extracted sequence of symbols and one or more possible matching digital signals of a set of idealized model data according to a Bayesian probability theory. The receiver, system and/or method generates a second result based on a comparison of an equalized version of the digital incoming signal and the one or more possible matching digital signals. The receiver, system and/or method generates a third result based on a comparison of the extracted sequence of symbols and one or more possible matching digital signals of a modified set of idealized model data.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 23, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Christopher Paul Reed, David Kirk Conn