Patents by Inventor David L. Beshears

David L. Beshears has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10743776
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: August 18, 2020
    Assignee: MAJELCO MEDICAL, INC.
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara M. Brewer Cates, Adan James Akerman, Annette MacIntyre
  • Patent number: 10690684
    Abstract: A system for measuring the blood loss comprises a measuring device that determines the hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, the hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 23, 2020
    Assignees: Majelco Medical, Inc., University of Utah Research Foundation
    Inventors: Annette Macintyre, Lara Brewer Cates, Suzanne Wendelken, Quinn Tate, Soeren Hoehne, Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Adan James Akerman
  • Publication number: 20190261868
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector, The container receives blood and other fluids from a patient during a medical procedure, Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara M. Brewer Cates, Adan James Akerman, Annette MacIntyre
  • Patent number: 10285596
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: May 14, 2019
    Assignee: MAJELCO MEDICAL, INC.
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara Brewer, Adan James Akerman
  • Publication number: 20190041405
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Inventors: Annette Macintyre, Lara Brewer, Suzanne Wendelken, Quinn Tate, Soeren Hoehne, Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Adan James Akerman
  • Publication number: 20170290518
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 12, 2017
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara Brewer, Adan James Akerman
  • Patent number: 7973235
    Abstract: A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: July 5, 2011
    Assignee: UT-Batelle, LLC
    Inventors: Jeffrey D. Muhs, Dennis D. Earl, David L. Beshears, Lonnie C. Maxey, John K. Jordan, Randall F. Lind
  • Patent number: 7375293
    Abstract: A weigh-in-motion device and method having at least one transducer pad, each transducer pad having at least one transducer group with transducers positioned essentially perpendicular to the direction of travel. At least one pad microcomputer is provided on each transducer pad having a means for calculating first output signal indicative of weight, second output signal indicative of time, and third output signal indicative of speed. At least one host microcomputer is in electronic communication with each pad microcomputer, and having a means for calculating at least one unknown selected from the group consisting of individual tire weight, individual axle weight, axle spacing, speed profile, longitudinal center of balance, and transverse center of balance.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: May 20, 2008
    Assignee: UT-Battelle, LLC
    Inventors: David L. Beshears, Matthew B. Scudiere, Clifford P. White
  • Patent number: 7305324
    Abstract: An asset identification and information infrastructure management (AI3M) device having an automated identification technology system (AIT), a Transportation Coordinators' Automated Information for Movements System II (TC-AIMS II), a weigh-in-motion system (WIM-II), and an Automated Air Load Planning system (AALPS) all in electronic communication for measuring and calculating actual asset characteristics, either statically or in-motion, and further calculating an actual load plan.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: December 4, 2007
    Assignee: UT-Battelle, LLC
    Inventors: David L. Beshears, Stephen G. Batsell, Robert K. Abercrombie, Matthew B. Scudiere, Clifford P. White
  • Patent number: 7231128
    Abstract: A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: June 12, 2007
    Assignee: UT-Battelle, LLC
    Inventors: Jeffrey D. Muhs, Dennis D. Earl, David L. Beshears, Lonnie C. Maxey, John K. Jordan, Randall F. Lind
  • Publication number: 20040187908
    Abstract: A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.
    Type: Application
    Filed: April 14, 2004
    Publication date: September 30, 2004
    Inventors: Jeffrey D. Muhs, Dennis D. Earl, David L. Beshears, Lonnie C. Maxey, John K. Jordan, Randall F. Lind
  • Publication number: 20040118447
    Abstract: A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.
    Type: Application
    Filed: August 1, 2003
    Publication date: June 24, 2004
    Inventors: Jeffrey D. Muhs, Dennis D. Earl, David L. Beshears, Lonnie C. Maxey, John K. Jordan, Randall F. Lind
  • Patent number: 6123455
    Abstract: An apparatus for measuring the temperature of a moving substrate includes an air gun with a powder inlet port in communication with the outlet port of a powder reservoir, an air inlet port in communication with a pressurized air source, and an outlet nozzle spaced from and directed toward the moving substrate. The air gun is activated by the air pulses to spray controlled amounts of the powdered phosphor onto the moving substrate, where the phosphor assumes the temperature of the moving substrate. A laser produces light pulses, and optics direct the light pulses onto the phosphor on the moving substrate, in response to which the phosphor emits a luminescence with a decay rate indicative of the temperature of the phosphor. A collection lens is disposed to focus the luminescence, and a photodetector detects the luminescence focused by the collection lens and produces an electrical signal that is characteristic of the brightness of the luminescence.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: September 26, 2000
    Assignee: American Iron and Steel Institute
    Inventors: David L. Beshears, David N. Sitter, Jr., William H. Andrews, Marc L. Simpson, Ruth A. Abston, Michael R. Cates, Steve W. Allison
  • Patent number: 5998741
    Abstract: This system and method of operation weighs and characterizes a moving vehicle traveling on a roadway. The moving vehicle travels across a weight transducer and first and second switching devices. The transducer provides a first set of output signals indicative of vehicle tire loading. The switching devices provide second output signals indicative of vehicle speed and characterization. Processor means receive the first and second output signals and characterize the vehicle; calculate the vehicle speed and calculate the vehicle weight by integrating the second output signals and combining with the vehicle speed.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: December 7, 1999
    Assignee: Lockheed Martin Energy Research Corp.
    Inventors: David L. Beshears, Gary J. Capps, John K. Jordan, John V. LaForge, Jeffrey D. Muhs, Robert N. Nodine, Matthew B. Scudiere, Cliff P. White
  • Patent number: 5986272
    Abstract: A method for determining the temperature of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: November 16, 1999
    Assignee: American Iron and Steel Institute
    Inventors: Charles L. Britton, Jr., David L. Beshears, Marc L. Simpson, Michael R. Cates, Steve W. Allison
  • Patent number: 5959259
    Abstract: This system and method of operation weighs and characterizes a moving vehicle traveling on a roadway. The moving vehicle travels across a weight transducer and first and second switching devices. The transducer provides a first set of output signals indicative of vehicle tire loading. The switching devices provide second output signals indicative of vehicle speed and characterization. Processor means receive the first and second output signals and characterize the vehicle; calculate the vehicle speed and calculate the vehicle weight by integrating the second output signals and combining with the vehicle speed.
    Type: Grant
    Filed: March 11, 1997
    Date of Patent: September 28, 1999
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: David L. Beshears, Gary J. Capps, John K. Jordan, John V. LaForge, Jeffrey D. Muhs, Robert N. Nodine, Matthew B. Scudiere, Cliff P. White
  • Patent number: 5949539
    Abstract: A method for determining the decay-time constant of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: September 7, 1999
    Assignee: American Iron and Steel Institute
    Inventors: Charles L. Britton, Jr., David L. Beshears, Marc L. Simpson, Michael R. Cates, Steve W. Allison