Patents by Inventor David L. Dean, Jr.

David L. Dean, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9910236
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: March 6, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Harley J. Staber, Kevin L. Strause, Alan W. Ugolini
  • Patent number: 9116324
    Abstract: Embodiments disclosed in the detailed description include stacked fiber optic modules and fiber optic equipment supporting stacked fiber optic modules. In one embodiment, a stacked fiber optic module is provided. This embodiment of the stacked fiber optic module comprises a body having a first sub-body and a second sub-body where the second sub-body can translate relative to the first sub-body. The stacked fiber optic module further comprises a first plurality of fiber optic components disposed in a first longitudinal axis in the at least one front side. The stacked fiber optic module also further comprises a second plurality of fiber optic components disposed adjacent the first plurality of fiber optic components in a second longitudinal axis parallel or substantially parallel to the first longitudinal axis in the at least one front side.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: August 25, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Juan Garcia Martinez, Sebastian Schreiber
  • Publication number: 20150185429
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 2, 2015
    Inventors: Terry L. Cooke, David L. Dean, JR., Harley J. Staber, Kevin L. Strause, Alan W. Ugolini
  • Patent number: 9020320
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: April 28, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Harley J. Staber, Kevin L. Strause, Alan W. Ugolini
  • Patent number: 8944411
    Abstract: Pulling grip housing assemblies for a fiber optic assembly are disclosed. In one embodiment, the pulling grip assembly is comprised of a pulling grip housing for receiving part of a fiber optic assembly. A pulling grip sleeve is also provided. The pulling grip sleeve has at least one sleeve locking feature suitable for cooperating with a housing locking feature of the pulling grip housing to secure the pulling grip housing to the pulling grip sleeve. In this manner, the pulling grip housing can easily be secured to the pulling grip sleeve and removed when pulling of a fiber optic assembly is completed. The pulling grip housing and pulling grip sleeve can also be reused for pulling other fiber optic assemblies.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 3, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn
  • Patent number: 8712206
    Abstract: High-density fiber optic modules and fiber optic module housings and related equipment are disclosed. In certain embodiments, a front opening of a fiber optic module and/or fiber optic module housing is configured to receive fiber optic components. The width and/or height of the front opening can be provided according to a designed relationship to a width and/or height, respectively, of a front side of a main body of the fiber optic module and/or fiber optic module housing. In this manner, a high density of fiber optic components and/or connections for a given space of the front side of the fiber optic module can be supported by the fiber optic module and/or fiber optic module housing. The fiber optic modules and fiber optic module housings disclosed herein can be disposed in fiber optic equipment including but not limited to a fiber optic chassis and a fiber optic equipment drawer.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 29, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Gerald J. Davis, David L. Dean, Jr., Marco A. Gonzalez Garcia, Tory A. Klavuhn, Manuel A. Lopez Sanchez, Brian K. Rhoney, Alan W. Ugolini
  • Patent number: 8662760
    Abstract: A fiber optic connector that employs an optical fiber guide member, and a cable assembly that uses the connector are disclosed. The connector has a connector housing formed by mateable sections. The connector housing defines a housing passage having opposite connector-end and channel-end portions that define respective connector-end and channel-end passages, with the channel-end portion configured to be arranged adjacent the end of a fiber optic cable. An optical fiber guide member is disposed in the channel-end passage and has a first transition end that faces the connector-end passage. The optical fiber guide member has a conduit configured to loosely confine and guide the optical fibers to the connector-end passage. Connector sub-assemblies can be operably supported at the connector-end portion supporting end portions of the optical fiber.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: March 4, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Timothy S. Cline, Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn
  • Patent number: 8620130
    Abstract: Pulling grips for installing a fiber optic assembly are disclosed. The pulling grip includes a pulling grip housing for receiving part of a fiber optic assembly therein. The pulling grip may also include a pulling grip sleeve and/or pulling sock. In one embodiment, the pulling grip housing has a friction fit with the pulling grip sleeve when assembled, thereby inhibiting rotation therebetween. Consequently, the friction fit advantageously inhibits twisting of the fiber optic assembly when installing the same using the pulling grip. In this manner, the pulling grip housing can easily be insert into the pulling grip sleeve and removed when pulling of a fiber optic assembly is completed. The pulling grip housing, pulling grip sleeve, and/or pulling sock may also be reused for pulling other fiber optic assemblies.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: December 31, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn
  • Patent number: 8620123
    Abstract: A fiber optic cable includes a first optical fiber, a jacket, and a second optical fiber. The first optical fiber includes a glass core and cladding. The glass core is configured to provide controlled transmission of light through the fiber optic cable for high-speed data communication. The jacket has an interior surface that defines a conduit through which the first optical fiber extends. The jacket further has an exterior surface that defines the outside of the fiber optic cable. The second optical fiber is integrated with the exterior surface of the jacket.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: December 31, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: David L. Dean, Jr., William C. Hurley
  • Patent number: 8559785
    Abstract: A clip, configured to support a furcation body, includes a keyhole member, a catch, a cover, and an arm. The keyhole member may be received in a keyhole of a mounting surface, and is offset from a bottom of the clip via a slot guide such that when the bottom of the clip slides along the mounting surface, a top of the keyhole member engages an underside of the mounting surface to lock the clip to the mounting surface. The catch extends from the bottom of the clip in a direction that the keyhole member is offset from the bottom of the clip. The cover is coupled to a wall of the clip extending from the bottom of the clip in a direction away from the catch. The arm extends from the clip in a direction away from the catch and provides a handling point above the clip.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 15, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Edward K. Barlowe, Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Jeffery M. Walters
  • Publication number: 20130209045
    Abstract: A fiber optic cable includes a first optical fiber, a jacket, and a second optical fiber. The first optical fiber includes a glass core and cladding. The glass core is configured to provide controlled transmission of light through the fiber optic cable for high-speed data communication. The jacket has an interior surface that defines a conduit through which the first optical fiber extends. The jacket further has an exterior surface that defines the outside of the fiber optic cable. The second optical fiber is integrated with the exterior surface of the jacket.
    Type: Application
    Filed: March 27, 2012
    Publication date: August 15, 2013
    Inventors: David L. Dean, JR., William C. Hurley
  • Publication number: 20130148935
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Application
    Filed: January 22, 2013
    Publication date: June 13, 2013
    Applicant: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, JR., Harley J. Staber, Kevin L. Strause, Alan W. Ugolini
  • Patent number: 8452148
    Abstract: Fiber optic equipment that supports independently translatable fiber optic modules and/or fiber optic equipment trays containing one or more fiber optic modules is disclosed. In some embodiments, one or more fiber optic modules are disposed in a plurality of independently translatable fiber optic equipment trays which are received in a tray guide system. In this manner, each fiber optic equipment tray is independently translatable within the guide system. One or more fiber optic modules may also be disposed in one or more module guides disposed in the fiber optic equipment trays to allow each fiber optic module to translate independently of other fiber optic modules in the same fiber optic equipment tray. In other embodiments, a plurality of fiber optic modules are disposed in a module guide system disposed in the fiber optic equipment that translate independently of other fiber optic modules disposed within the module guide system.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 28, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Tory A. Klavuhn, David L. Dean, Jr., Juan Garcia, Elmer Mariano, Manuel Lopez, Juan Miguel Gonzalez
  • Patent number: 8437597
    Abstract: Fiber optic shelf assemblies and furcation mounting structures for securing a plurality of furcation bodies of respective fiber optic cable assembles within the fiber optic shelf are disclosed. In one embodiment, the fiber optic shelf has a one-to-one correspondence between a plurality of respective modules and the respective fiber optic cable assemblies. Additionally, the fiber optic shelf assemblies and furcation mounting structures disclosed advantageously allow the mounting of a relatively large number of furcation bodies within the fiber optic shelf assembly for supporting relatively large fiber optic connections per 1 U rack space.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: May 7, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Harley J. Staber
  • Patent number: 8433171
    Abstract: A fiber optic apparatus comprising a fiber optic equipment and a routing region at the fiber optic equipment is disclosed. At least 98 optical fibers, at least 434 optical fibers, at least 866 optical fibers, and at least 1152 optical fibers route in the routing region per 1-U shelf space, wherein a maximum 10?12 bit-error-rate and 0.75 dB attenuation is maintained per duplex optical signal carried by the optical fibers. Additionally, the routing region may be configured such that one or more of the optical fibers make a maximum of one bend in the routing region and route generally horizontally in the routing region. One or more of the optical fibers may be terminated simplex, duplex fiber or multiple fiber optic connectors.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: April 30, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Harley J. Staber, Kevin L. Strause, Alan W. Ugolini
  • Publication number: 20130011105
    Abstract: A clip, configured to support a furcation body, includes a keyhole member, a catch, a cover, and an arm. The keyhole member may be received in a keyhole of a mounting surface, and is offset from a bottom of the clip via a slot guide such that when the bottom of the clip slides along the mounting surface, a top of the keyhole member engages an underside of the mounting surface to lock the clip to the mounting surface. The catch extends from the bottom of the clip in a direction that the keyhole member is offset from the bottom of the clip. The cover is coupled to a wall of the clip extending from the bottom of the clip in a direction away from the catch. The arm extends from the clip in a direction away from the catch and provides a handling point above the clip.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Inventors: Edward K. Barlowe, Terry L. Cooke, David L. Dean, JR., Tory A. Klavuhn, Jeffery M. Walters
  • Patent number: 8337095
    Abstract: Ferrules having at least one tapered fiber channel that supports at least one optical fiber are disclosed. The at least one tapered fiber channel is defined by at least one channel wall. The material making up the channel wall is at least one of deformable and removable by forcible contact by the at least one optical fiber when the optical fiber is inserted into the fiber channel. This results in the formation of an interference fit between the front channel end and the optical fiber end when the diameter of the optical fiber end exceeds the diameter of the channel front end. The fiber channel wall may optionally include at least one deformable and/or removable-by-contact protrusion, with the at least one protrusion preferably being located in the channel section adjacent the narrow front channel end. Methods of forming the ferrules are also disclosed. Single-fiber and multi-fiber optical fiber connectors that employ the ferrules are also disclosed.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 25, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: David L. Dean, Jr., Alan J. Malanowski, Jetta M. Pyatt
  • Patent number: 8328432
    Abstract: A fiber optic cable assembly includes a fiber optic connector and a fiber optic cable having at least one strength element, the connector and cable held together by a crimp band. The crimp band may include at least one lateral aperture on at least one end for inspecting the disposition of the strength element prior to crimping to ensure a uniform distribution of the strength element.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Christopher S. Houser, James M. Wilson
  • Patent number: 8326107
    Abstract: A fiber optic apparatus having a fiber optic equipment tray and an extension adapted to receive, organize and manage fiber optic cables routed to the fiber optic equipment tray is disclosed. The fiber optic equipment tray has a front, a rear, a base, and at least one extension rail. The extension movably attaches to the fiber optic equipment tray at the extension rail and, thereby, slidably extends from and retracts toward the rear of the fiber optic equipment tray. The extension comprises a shelf and a cable management tray hingedly attached to the shelf. The shelf moves over the base when the extension extends from and retracts toward the fiber optic equipment tray. The cable management tray is in planer alignment with the fiber optic equipment tray when the extension is retracted, and allowed to pivot downwardly when the extension is extended. At least one furcation plug tray attaches to the cable management tray.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 4, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Tory A. Klavuhn, David L. Dean, Jr., Juan Garcia, Manuel Lopez, Juan Miguel Gonzalez
  • Patent number: 8301004
    Abstract: A fiber optic cable assembly including a fiber optic cable and a furcation body is disclosed. An attachment feature can be provided to mount the furcation body to a mounting surface of fiber optic equipment for securing a portion of the fiber optic cable assembly to the fiber optic equipment. The attachment feature may include an integrated anti-rotation feature to inhibit rotation of the furcation body with respect to a mounting surface. The anti-rotation feature is provided by one or more generally planar surfaces of the furcation body for abutting with at least one complementary planar mounting surface.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: October 30, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Tory A. Klavuhn, Clyde B. Mabry, III, Daniel S. McGranahan, Jeffrey M. Walters