Patents by Inventor David L. Kaplan

David L. Kaplan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210178017
    Abstract: The technology described herein is directed to compositions comprising at least a first porous biomaterial layer and a second impermeable biomaterial layer and methods relating thereto. In some embodiments, the compositions and methods described herein relate to wound healing, e.g. repair of wounds and/or tissue defects.
    Type: Application
    Filed: February 5, 2021
    Publication date: June 17, 2021
    Inventors: Joshua R. Mauney, Carlos R. Estrada, David L. Kaplan, Eun Seok Gil
  • Publication number: 20210177977
    Abstract: The present application relates to silk fibroin-based materials, methods for making and using the same. Provided materials exhibit shape memory characteristics while showing comparable or better volumetric swelling, biocompatibility and/or degradability when compared to current memory polymers derived from either natural or synthetic materials.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 17, 2021
    Inventors: David L. Kaplan, Fiorenzo G. Omenetto, Joseph E. Brown, Rodrigo R. Jose
  • Patent number: 11009792
    Abstract: The present application provides novel methods for the fabrication of nanostructures. More specifically, the invention relates to direct electron beam lithography with the use of silk fibroin as “green” resists.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 18, 2021
    Assignee: Tufts University
    Inventors: Fiorenzo G. Omenetto, David L. Kaplan, Sunghwan Kim, Benedetto Marelli
  • Patent number: 11001685
    Abstract: Protein-protein imprinting of silk fibroin is introduced as a rapid, high-fidelity, and/or high-throughput method for the fabrication of nanoscale structures in silk films, through controlled manipulation of heat and/or pressure. High resolution imprinting on conformal surfaces is also demonstrated.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: May 11, 2021
    Assignee: Tufts University
    Inventors: Fiorenzo G. Omenetto, David L. Kaplan, Mark A. Brenckle
  • Publication number: 20210101946
    Abstract: Provided herein relates to high molecular weight silk-based materials, compositions comprising the same, and processes of preparing the same. The silk-based materials produced from high molecular weight silk can be used in various applications ranging from biomedical applications such as tissue engineering scaffolds to construction applications. In some embodiments, the high molecular weight silk can be used to produce high strength silk-based materials. In some embodiments, the high molecular weight silk can be used to produce silk-based materials that are mechanically strong with tunable degradation properties.
    Type: Application
    Filed: August 20, 2020
    Publication date: April 8, 2021
    Inventors: Tim Jia-Ching Lo, Gary G. Leisk, Benjamin Partlow, Fiorenzo Omenetto, David L. Kaplan, Jonathan A. Kluge, Matthew A. Kluge
  • Patent number: 10933173
    Abstract: A microneedle or microneedle device includes a microneedle body extending from a base to a penetrating tip formed from a silk fibroin based material, which is easy to fabricate and highly biocompatible. The microneedle device can include one or more microneedles mounted to a substrate. The silk fibroin can include active agents to be transported into or across biological barriers such as skin, tissue and cell membranes. The silk fibroin microneedles can be fully or partially biodegradable and/or bioerodible. The silk fibroin is highly stable, affords room temperature storage and is implantable. The silk fibroin structure can be modulated to control the rate of active agent delivery.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: March 2, 2021
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Konstantinos Tsioris, Fiorenzo G. Omenetto, Eleanor M. Pritchard
  • Patent number: 10925999
    Abstract: The present invention provides, among other things, a elastomeric biomaterial having enzymatically cross-linked amino acid phenolic side chains to generate highly elastic hydrogels. Materials are characterized by tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers. Provided materials are support encapsulation of cells. Methods of making and using of provided particles are also disclosed.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: February 23, 2021
    Assignee: Trustees of Tufts College
    Inventors: Craig W. Hanna, Benjamin P. Partlow, David L. Kaplan
  • Patent number: 10912862
    Abstract: The technology described herein is directed to compositions comprising at least a first porous biomaterial layer and a second impermeable biomaterial layer and methods relating thereto. In some embodiments, the compositions and methods described herein relate to wound healing, e.g. repair of wounds and/or tissue defects.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: February 9, 2021
    Assignees: Children's Medical Center Corporation, Tufts University
    Inventors: Joshua R. Mauney, Carlos R. Estrada, David L. Kaplan, Eun Seok Gil
  • Patent number: 10906423
    Abstract: Systems and methods are described for a power aggregation system. In one implementation, a method includes establishing a communication connection with each of multiple electric resources connected to a power grid, receiving an energy generation signal from a power grid operator, and controlling a number of the electric resources being charged by the power grid as a function of the energy generation signal.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: February 2, 2021
    Assignee: V2Green, Inc.
    Inventors: Seth W. Bridges, Seth B. Pollack, David L. Kaplan
  • Patent number: 10892639
    Abstract: A connection in a power aggregation system for distributed electric resources is located by establishing, by way of a computer network, a communication between a mobile electric resource and a network-connected device, the mobile electric resource including one or more processors including a processor to control power flow, obtaining, with the one or more processors, a unique identifier associated with the network-connected device, transmitting, with the one or more processors, information regarding the mobile electric resource to a remote server, determining, with the one or more processors or the remote server, a location of the mobile electric resource from the unique identifier, determining at least one power connection location from the determined location, and charging the mobile electric resource with the determined at least one power connection location.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: January 12, 2021
    Assignee: V2Green, Inc.
    Inventors: Seth W. Bridges, Seth B. Pollack, David L. Kaplan
  • Publication number: 20210002335
    Abstract: The present application relates to silk fibroin-based hydrogels, methods for making and using the same.
    Type: Application
    Filed: May 12, 2020
    Publication date: January 7, 2021
    Inventors: Fiorenzo G. Omenetto, David L. Kaplan, Benedetto Marelli, Alexander Nicholas Mitropolous
  • Patent number: 10874742
    Abstract: The present application relates to silk fibroin-based materials, methods for making and using the same. Provided materials exhibit shape memory characteristics while showing comparable or better volumetric swelling, biocompatibility and/or degradability when compared to current memory polymers derived from either natural or synthetic materials.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: December 29, 2020
    Assignee: Tufts University
    Inventors: David L. Kaplan, Fiorenzo G. Omenetto, Joseph E. Brown, Rodrigo R. Jose
  • Patent number: 10864299
    Abstract: In some embodiments, the present invention provides tissue compositions including a first silk scaffold comprising a plurality of epithelial cells, a second silk scaffold comprising a plurality of stromal cells, and a plurality of neurons. In some embodiments, provided compositions can function as physiologically relevant corneal model systems for, inter alia, testing of therapeutics for corneal disease and/or injury and production of functional corneal tissue (e.g., for transplant, etc). The present invention also provides methods for making and using provided compositions.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: December 15, 2020
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Siran Wang, Rachel Gomes, Chiara Ghezzi, Dana Cairns
  • Publication number: 20200306415
    Abstract: The present invention provides, in some embodiments, multi-layer silk compositions including a first layer comprising silk fibroin and keratinocytes, a second layer comprising silk fibroin and fibroblasts, a third layer comprising silk fibroin and adipocytes, and a plurality of nervous system cells, wherein at least some of the plurality of nervous system cells span at least two layers, and methods of making and using the same. In some embodiments, provided methods and compositions further include immune cells and/or endothelial cells.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 1, 2020
    Inventors: David L. Kaplan, Sarah Lightfoot Vidal, Rosalyn Abbot, Siwei Zhao, Dana Cairns, Fiorenzo G. Omenetto
  • Publication number: 20200282106
    Abstract: The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.
    Type: Application
    Filed: May 8, 2019
    Publication date: September 10, 2020
    Inventors: David L. Kaplan, Ung-Jin Kim, Jaehyung Park, Hyoung-Joon Jin
  • Patent number: 10758645
    Abstract: The present invention provides, among other things, a silk ceramic material having enzymatically cross-linked amino acid side chains to generate injectable and flexible foam ceramics. Provided are compositions and methods of producing soft, flexible ceramic foam with silk polymeric crosslinking to serve as binders. Materials have applications in osteochondral and dental replacement and repair.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: September 1, 2020
    Assignee: Tufts University
    Inventors: Stephanie L. McNamara, Benjamin P. Partlow, David L. Kaplan
  • Patent number: 10736943
    Abstract: A method was developed to prepare silk fibroin microspheres using lipid vesicles as templates to efficiently load therapeutic agents in active form for controlled release. The lipids are subsequently removed through the use of a dehydration agent, such as methanol or sodium chloride, resulting in ?-sheet structure dominant silk microsphere structures having about 2 ?m in diameter. The therapeutic agent can be entrapped in the silk microspheres and used in pharmaceutical formulations for controlled-release treatments.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: August 11, 2020
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Xiaoqin Wang
  • Publication number: 20200246167
    Abstract: A bioresorbable biopolymer stents can be deployed within a blood vessel and resorbed by the body over a predetermined time period after the blood vessel has been remodeled. A ratcheting biopolymer stent can include a ratcheting mechanism that allows the biopolymer stent to be deployed on a small diameter configuration and then expanded to a predefined larger diameter configuration wherein after expansion, the ratcheting mechanism locks the biopolymer stent in the expanded configuration. A folding biopolymer stent can be deployed in a folded, small diameter configuration and then expanded to an unfolded configuration having a larger diameter. The bioresorbable biopolymer can include silk fibroin and blend that include silk fibroin materials.
    Type: Application
    Filed: August 19, 2019
    Publication date: August 6, 2020
    Inventors: Rodrigo R. Jose, David L. Kaplan, Mark Iafrati, Eun Seok Gil, Gary G. Leisk
  • Patent number: 10731046
    Abstract: The present application discloses biopolymer-based ink formulations that are useful for inkjet printing and other applications. Related methods are also disclosed.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: August 4, 2020
    Assignee: Tufts University
    Inventors: Fiorenzo G. Omenetto, David L. Kaplan, Hu Tao, Benedetto Marelli, Miaomiao Yang
  • Publication number: 20200181213
    Abstract: The present invention, in some aspects, provides compositions including a solution comprising a plurality of exfoliated silk microfibrils and/or exfoliated silk nanofibrils, wherein the micro- or nano-fibrils are characterized as having a substantially nematic structure, as well as methods for making and using the same.
    Type: Application
    Filed: March 31, 2017
    Publication date: June 11, 2020
    Inventors: Markus J. Buehler, David L. Kaplan, Shengjie Ling, Kai Jin